References
Items 157 to 168 of 6390 total
- Gong JH et al. (APR 1994) Leukemia 8 4 652--8
Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells.
The cell line described here was established for a 50-year-old male patient with rapidly progressive non-Hodgkin's lymphoma whose marrow was diffusely infiltrated with large granular lymphocytes (LGL). Immunophenotyping of marrow blasts and peripheral lymphocytes was positive for CD56, CD2 and CD7, and negative for CD3. Cytotoxicity of peripheral blood mononuclear cells at an effector: target (E:T) cell ratio of 50:1 was 79% against K562 cells and 48% against Daudi cells. To establish the line, cells from the peripheral blood were placed into enriched alpha medium containing 12.5% fetal calf serum, 12.5% horse serum, 10(-4) M beta-mercaptoethanol and 10(-6) M hydrocortisone. Growth of the line (termed NK-92) is dependent on the presence of recombinant IL-2 and a dose as low as 10 U/ml is sufficient to maintain proliferation. Conversely, cells die within 72 h when deprived of IL-2; IL-7 and IL-12 do not maintain long-term growth, although IL-7 induces short-term proliferation measured by 3H-thymidine incorporation. None of the other cytokines tested (IL-1 alpha, IL-6, TNF-alpha, IFN-alpha, IFN-gamma) supported growth of NK-92 cells which have the following characteristics: surface marker positive for CD2, CD7, CD11a, CD28, CD45, CD54, CD56bright; surface marker negative for CD1, CD3, CD4, CD5, CD8, CD10, CD14, CD16, CD19, CD20, CD23, CD34, HLA-DR. DNA analysis showed germline configuration for T-cell receptor beta and gamma genes. CD25 (p55 IL-2 receptor) is expressed on about 50% of all cells when tested at 100 U/ml of IL-2 and its expression correlates inversely with the IL-2 concentration. The p75 IL-2 receptor is expressed on about half of the cells at low density irrespective of the IL-2 concentration. NK-92 cells kill both K562 and Daudi cells very effectively in a 4 h51-chromium release assay (84 and 86% respectively, at an E:T cell ratio of 5:1). The cell line described here thus displays characteristics of activated NK-cells and could be a valuable tool to study their biology.Catalog #: Product Name: 05100 MyeloCultâ„¢ H5100 Catalog #: 05100 Product Name: MyeloCultâ„¢ H5100 Elsheikh E et al. (OCT 2005) Blood 106 7 2347--55Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity.
The monocyte population in blood is considered a possible source of endothelial precursors. Because endothelial-specific receptor tyrosine kinases act as regulators of endothelial cell function, we investigated whether expression of the vascular endothelial growth factor receptor-2 (VEGFR-2) on monocytes is important for their endothelial-like functional capacity. Peripheral-blood monocytes expressing vascular endothelial growth factor receptor-2 (VEGFR-2), or CD14+/VEGFR-2+, were isolated, and their phenotypic, morphologic, and functional capacities were compared with those of monocytes negative for this marker (CD14+/VEGFR-2-). CD14+/VEGFR-2+ cells constituted approximately 2% +/- 0.5% of the total population of monocytes and 0.08% +/- 0.04% of mononuclear cells in blood. CD14+/VEGFR-2+ cells exhibited the potential to differentiate in vitro into cells with endothelial characteristics. The cells were efficiently transduced by a lentiviral vector driving expression of the green fluorescence protein (GFP). Transplantation of GFP-transduced cells into balloon-injured femoral arteries of nude mice significantly contributed to efficient reendothelialization. CD14+/VEGFR-2- did not exhibit any of these characteristics. These data demonstrate that the expression of VEGFR-2 on peripheral blood monocytes is essential for their endothelial-like functional capacity and support the notion of a common precursor for monocytic and endothelial cell lineage. Our results help clarify which subpopulations may restore damaged endothelium and may participate in the maintenance of vascular homeostasis.Nä et al. (MAR 2012) Stem Cells 30 3 452--60RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation.
Human embryonic stem cells (hESC) have a unique capacity to self-renew and differentiate into all the cell types found in human body. Although the transcriptional regulators of pluripotency are well studied, the role of cytoplasmic regulators is still poorly characterized. Here, we report a new stem cell-specific RNA-binding protein L1TD1 (ECAT11, FLJ10884) required for hESC self-renewal and cancer cell proliferation. Depletion of L1TD1 results in immediate downregulation of OCT4 and NANOG. Furthermore, we demonstrate that OCT4, SOX2, and NANOG all bind to the promoter of L1TD1. Moreover, L1TD1 is highly expressed in seminomas, and depletion of L1TD1 in these cancer cells influences self-renewal and proliferation. We show that L1TD1 colocalizes and interacts with LIN28 via RNA and directly with RNA helicase A (RHA). LIN28 has been reported to regulate translation of OCT4 in complex with RHA. Thus, we hypothesize that L1TD1 is part of the L1TD1-RHA-LIN28 complex that could influence levels of OCT4. Our results strongly suggest that L1TD1 has an important role in the regulation of stemness.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 36254 DMEM/F-12 with 15 mM HEPES Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 36254 Product Name: DMEM/F-12 with 15 mM HEPES Starlets D et al. (JUN 2006) Blood 107 12 4807--16Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival.
CD74 is an integral membrane protein that was thought to function mainly as an MHC class II chaperone. However, CD74 was recently shown to have a role as an accessory-signaling molecule. Our studies demonstrated that CD74 regulates B-cell differentiation by inducing a pathway leading to the activation of transcription mediated by the NF-kappaB p65/RelA homodimer and its coactivator, TAF(II)105. Here, we show that CD74 stimulation with anti-CD74 antibody leads to an induction of a signaling cascade resulting in NF-kappaB activation, entry of the stimulated cells into the S phase, elevation of DNA synthesis, cell division, and augmented expression of BCL-X(L). These studies therefore demonstrate that surface CD74 functions as a survival receptor.Catalog #: Product Name: 15024 RosetteSepâ„¢ Human B Cell Enrichment Cocktail Catalog #: 15024 Product Name: RosetteSepâ„¢ Human B Cell Enrichment Cocktail Emre N et al. (JAN 2010) PLoS ONE 5 8 e12148The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers
BACKGROUND: Due to the inherent sensitivity of human embryonic stem cells (hESCs) to manipulations, the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS) can be low. Additionally, a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK) inhibitor, Y-27632, previously has been identified as enhancing survival of hESCs upon single-cell dissociation, as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions. METHODOLOGY/PRINCIPAL FINDINGS: HESCs were sorted using markers for SSEA-3, TRA-1-81, and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions, cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically, treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632, hESCs were further analyzed. Specifically, hESCs sorted with and without the addition of Y-27632 retained normal morphology, expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry, and maintained a stable karyotype. In addition, the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions. CONCLUSIONS/SIGNIFICANCE: The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency, and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types, identification and isolation of stem cell subpopulations, and generation of single cell clones. Finally, these results demonstrate an additional application of ROCK inhibition to hESC research.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Bieback K et al. (JAN 2004) Stem cells (Dayton, Ohio) 22 4 625--34Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood.
Evidence has emerged that mesenchymal stem cells (MSCs) represent a promising population for supporting new clinical concepts in cellular therapy. However, attempts to isolate MSCs from umbilical cord blood (UCB) of full-term deliveries have previously either failed or been characterized by a low yield. We investigated whether cells with MSC characteristics and multi-lineage differentiation potential can be cultivated from UCB of healthy newborns and whether yields might be maximized by optimal culture conditions or by defining UCB quality criteria. Using optimized isolation and culture conditions, in up to 63% of 59 low-volume UCB units, cells showing a characteristic mesenchymal morphology and immune phenotype (MSC-like cells) were isolated. These were similar to control MSCs from adult bone marrow (BM). The frequency of MSC-like cells ranged from 0 to 2.3 clones per 1 x 10(8) mononuclear cells (MNCs). The cell clones proliferated extensively with at least 20 population doublings within eight passages. In addition, osteogenic and chondrogenic differentiation demonstrated a multi-lineage capacity comparable with BM MSCs. However, in contrast to MSCs, MSC-like cells showed a reduced sensitivity to undergo adipogenic differentiation. Crucial points to isolate MSC-like cells from UCB were a time from collection to isolation of less than 15 hours, a net volume of more than 33 ml, and an MNC count of more than 1 x 10(8) MNCs. Because MSC-like cells can be isolated at high efficacy from full-term UCB donations, we regard UCB as an additional stem cell source for experimental and potentially clinical purposes.Catalog #: Product Name: 05401 MesenCultâ„¢ MSC Basal Medium (Human) 05402 MesenCultâ„¢ MSC Stimulatory Supplement (Human) 05411 MesenCultâ„¢ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCultâ„¢ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCultâ„¢ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCultâ„¢ Proliferation Kit (Human) Vazquez-Martin A et al. (MAR 2012) Cell cycle (Georgetown, Tex.) 11 5 974--89Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells.
The ability of somatic cells to reprogram their ATP-generating machinery into a Warburg-like glycolytic metabotype while overexpressing stemness genes facilitates their conversion into either induced pluripotent stem cells (iPSCs) or tumor-propagating cells. AMP-activated protein kinase (AMPK) is a metabolic master switch that senses and decodes intracellular changes in energy status; thus, we have evaluated the impact of AMPK activation in regulating the generation of iPSCs from nonstem cells of somatic origin. The indirect and direct activation of AMPK with the antidiabetic biguanide metformin and the thienopyridone A-769662, respectively, impeded the reprogramming of mouse embryonic and human diploid fibroblasts into iPSCs. The AMPK activators established a metabolic barrier to reprogramming that could not be bypassed, even through p53 deficiency, a fundamental mechanism to greatly improve the efficiency of stem-cell production. Treatment with metformin or A-769662 before the generation of iPSC colonies was sufficient to drastically decrease iPSC generation, suggesting that AMPK activation impedes early stem cell genetic reprogramming. Monitoring the transcriptional activation status of each individual reprogramming factor (i.e., Oct4, Sox2, Klf4 and c-Myc) revealed that AMPK activation notably prevented the transcriptional activation of Oct4, the master regulator of the pluripotent state. AMPK activation appears to impose a normalized metabolic flow away from the required pro-immortalizing glycolysis that fuels the induction of stemness and pluripotency, endowing somatic cells with an energetic infrastructure that is protected against reprogramming. AMPK-activating anti-reprogramming strategies may provide a roadmap for the generation of novel cancer therapies that metabolically target tumor-propagating cells.Catalog #: Product Name: 72922 A769662 73252 Metformin Catalog #: 72922 Product Name: A769662 Catalog #: 73252 Product Name: Metformin Jagtap S et al. (APR 2011) British Journal of Pharmacology 162 8 1743--56Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation.
BACKGROUND AND PURPOSE: Teratogenic substances induce adverse effects during the development of the embryo. Multilineage differentiation of human embryonic stem cells (hESCs) mimics the development of the embryo in vitro. Here, we propose a transcriptomic approach in hESCs for monitoring specific toxic effects of compounds as an alternative to traditional time-consuming and cost-intensive in vivo tests requiring large numbers of animals. This study was undertaken to explore the adverse effects of cytosine arabinoside (Ara-C) on randomly differentiated hESCs.backslashnbackslashnEXPERIMENTAL APPROACH: Human embryonic stem cells were used to investigate the effects of a developmental toxicant Ara-C. Sublethal concentrations of Ara-C were given for two time points, day 7 and day 14 during the differentiation. Gene expression was assessed with microarrays to determine the dysregulated transcripts in presence of Ara-C.backslashnbackslashnKEY RESULTS: Randomly differentiated hESCs were able to generate the multilineage markers. The low concentration of Ara-C (1 nM) induced the ectoderm and inhibited the mesoderm at day 14. The induction of ectodermal markers such as MAP2, TUBB III, PAX6, TH and NESTIN was observed with an inhibition of mesodermal markers such as HAND2, PITX2, GATA5, MYL4, TNNT2, COL1A1 and COL1A2. In addition, no induction of apoptosis was observed. Gene ontology revealed unique dysregulated biological process related to neuronal differentiation and mesoderm development. Pathway analysis showed the axon guidance pathway to be dysregulated.backslashnbackslashnCONCLUSIONS AND IMPLICATIONS: Our results suggest that hESCs in combination with toxicogenomics offer a sensitive in vitro developmental toxicity model as an alternative to traditional animal experiments.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 van Beem RT et al. (APR 2008) Journal of immunology (Baltimore, Md. : 1950) 180 7 5141--8The presence of activated CD4(+) T cells is essential for the formation of colony-forming unit-endothelial cells by CD14(+) cells.
The number of colony forming unit-endothelial cells (CFU-EC) in human peripheral blood was found to be a biological marker for several vascular diseases. In this study, the heterogeneous composition of immune cells in the CFU-ECs was investigated. We confirmed that monocytes are essential for the formation of CFU-ECs. Also, however, CD4(+) T cells were found to be indispensable for the induction of CFU-EC colonies, mainly through cell-cell contact. By blocking or activating CD3 receptors on CD4(+) T cells or blocking MHC class II molecules on monocytes, it was shown that TCR-MHCII interactions are required for induction of CFU-EC colonies. Because the supernatant from preactivated T cells could also induce colony formation from purified monocytes, the T cell support turned out to be cytokine mediated. Gene expression analysis of the endothelial-like colonies formed by CD14(+) cells showed that colony formation is a proangiogenic differentiation and might reflect the ability of monocytes to facilitate vascularization. This in vitro study is the first to reveal the role of TCR-MHC class II interactions between T cells and monocytes and the subsequent inflammatory response as stimulus of monocytic properties that are associated with vascularization.U. Rajamani et al. (MAY 2018) Cell stem cell 22 5 698--712.e9Super-Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit Obesogenic Signatures and Hormone Responses.
The hypothalamus contains neurons that integrate hunger and satiety endocrine signals from the periphery and are implicated in the pathophysiology of obesity. The limited availability of human hypothalamic neurons hampers our understanding of obesity disease mechanisms. To address this, we generated human induced pluripotent stem cells (hiPSCs) from multiple normal body mass index (BMI; BMI ≤ 25) subjects and super-obese (OBS) donors (BMI ≥ 50) with polygenic coding variants in obesity-associated genes. We developed a method to reliably differentiate hiPSCs into hypothalamic-like neurons (iHTNs) capable of secreting orexigenic and anorexigenic neuropeptides. Transcriptomic profiling revealed that, although iHTNs maintain a fetal identity, they respond appropriately to metabolic hormones ghrelin and leptin. Notably, OBS iHTNs retained disease signatures and phenotypes of high BMI, exhibiting dysregulated respiratory function, ghrelin-leptin signaling, axonal guidance, glutamate receptors, and endoplasmic reticulum (ER) stress pathways. Thus, human iHTNs provide a powerful platform to study obesity and gene-environment interactions.Catalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 Cheung AMS et al. (JUL 2007) Leukemia 21 7 1423--30Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential.
Aldehyde dehydrogenase (ALDH) activity is used to define normal hematopoietic stem cell (HSC), but its link to leukemic stem cells (LSC) in acute myeloid leukemia (AML) is currently unknown. We hypothesize that ALDH activity in AML might be correlated with the presence of LSC. Fifty-eight bone marrow (BM) samples were collected from AML (n=43), acute lymphoblastic leukemia (ALL) (n=8) and normal cases (n=7). In 14 AML cases, a high SSC(lo)ALDH(br) cell population was identified (ALDH(+)AML) (median: 14.89%, range: 5.65-48.01%), with the majority of the SSC(lo)ALDH(br) cells coexpressing CD34(+). In another 29 cases, there was undetectable (n=23) or rare (textless or =5%) (n=6) SSC(lo)ALDH(br) population (ALDH(-)AML). Among other clinicopathologic variables, ALDH(+)AML was significantly associated with adverse cytogenetic abnormalities. CD34(+) BM cells from ALDH(+)AML engrafted significantly better in NOD/SCID mice (ALDH(+)AML: injected bone 21.11+/-9.07%; uninjected bone 1.52+/-0.75% vs ALDH(-)AML: injected bone 1.77+/-1.66% (P=0.05); uninjected bone 0.23+/-0.23% (P=0.03)) with the engrafting cells showing molecular and cytogenetic aberrations identical to the original clones. Normal BM contained a small SSC(lo)ALDH(br) population (median: 2.92%, range: 0.92-5.79%), but none of the ALL cases showed this fraction. In conclusion, SSC(lo)ALDH(br) cells in ALDH(+)AML might denote primitive LSC and confer an inferior prognosis in patients.Catalog #: Product Name: 01701 ALDEFLUORâ„¢ Assay Buffer 01700 ALDEFLUORâ„¢ Kit 01705 ALDEFLUORâ„¢ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUORâ„¢ Assay Buffer Catalog #: 01700 Product Name: ALDEFLUORâ„¢ Kit Catalog #: 01705 Product Name: ALDEFLUORâ„¢ DEAB Reagent Liang Y et al. (APR 2013) Chinese journal of cancer 32 4 205--12The propensity for tumorigenesis in human induced pluripotent stem cells is related with genomic instability.
The discovery of induced pluripotent stem cells(iPSCs) is a promising advancement in the field of regenerative medicine. Previous studies have indicated that the teratoma-forming propensity of iPSCs is variable; however, the relationship between tumorigenic potential and genomic instability in human iPSCs (HiPSCs) remains to be fully elucidated. Here, we evaluated the malignant potential of HiPSCs by using both colony formation assays and tumorigenicity tests. We demonstrated that HiPSCs formed tumorigenic colonies when grown in cancer cell culture medium and produced malignancies in immunodeficient mice. Furthermore, we analyzed genomic instability in HiPSCs using whole-genome copy number variation analysis and determined that the extent of genomic instability was related with both the cells' propensity to form colonies and their potential for tumorigenesis. These findings indicate a risk for potential malignancy of HiPSCs derived from genomic instability and suggest that quality control tests, including comprehensive tumorigenicity assays and genomic integrity validation, should be rigorously executed before the clinical application of HiPSCs. In addition, HiPSCs should be generated through the use of combined factors or other approaches that decrease the likelihood of genomic instability.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Items 157 to 168 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.