References
Items 145 to 156 of 6390 total
- Kempf H et al. (SEP 2015) Nature protocols 10 9 1345--1361
Cardiac differentiation of human pluripotent stem cells in scalable suspension culture.
Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are a potential cell source for regenerative therapies, drug discovery and disease modeling. All these applications require a routine supply of relatively large quantities of in vitro-generated CMs. This protocol describes a suspension culture-based strategy for the generation of hPSC-CMs as cell-only aggregates, which facilitates process development and scale-up. Aggregates are formed for 4 d in hPSC culture medium followed by 10 d of directed differentiation by applying chemical Wnt pathway modulators. The protocol is applicable to static multiwell formats supporting fast adaptation to specific hPSC line requirements. We also demonstrate how to apply the protocol using stirred tank bioreactors at a 100-ml scale, providing a well-controlled upscaling platform for CM production. In bioreactors, the generation of 40-50 million CMs per differentiation batch at textgreater80% purity without further lineage enrichment can been achieved within 24 d.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Rodin S et al. (JUN 2010) Nature biotechnology 28 6 611--5Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511.
We describe a system for culturing human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells on a recombinant form of human laminin-511, a component of the natural hES cell niche. The system is devoid of animal products and feeder cells and contains only one undefined component, human albumin. The hES cells self-renewed with normal karyotype for at least 4 months (20 passages), after which the cells could produce teratomas containing cell lineages of all three germ layers. When plated on laminin-511 in small clumps, hES cells spread out in a monolayer, maintaining cellular homogeneity with approximately 97% OCT4-positive cells. Adhesion of hES cells was dependent on alpha6beta1 integrin. The use of homogeneous monolayer hES or iPS cell cultures provides more controllable conditions for the design of differentiation methods. This xeno-free and feeder-free system may be useful for the development of cell lineages for therapeutic purposes.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Lai W-H et al. (DEC 2010) Cellular reprogramming 12 6 641--653ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system.
Human-induced pluripotent stem cells (iPSCs) generated from human adult somatic cells through reprogramming hold great promises for future regenerative medicine. However, exposure of human iPSCs to animal feeder and serum in the process of their generation and maintenance imposes risk of transmitting animal pathogens to human subjects, thus hindering the potential therapeutic applications. Here, we report the successful generation of human iPSCs in a feeder-independent culture system with defined factors. Two stable human iPSC lines were established from primary human dermal fibroblasts of two healthy volunteers. These human iPSCs expressed a panel of pluripotency markers including stage-specific embryonic antigen (SSEA)-4, tumor-rejection antigen (TRA)-1-60, TRA-1-81, and alkaline phosphatase, while maintaining normal karyotypes and the exogenous reprogramming factors being silenced. In addition, these human iPSCs can differentiate along lineages representative of the three embryonic germ layers upon formation of embryoid bodies, indicating their pluripotency. Furthermore, subcutaneous transplantation of these cells into immunodeficient mice resulted in teratoma formation in 6 to 8 weeks. Our findings are an important step toward generating patient-specific iPSCs in a more clinically compliant manner by eliminating the need of animal feeder cells and animal serum.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Onuma Y et al. (APR 2015) PLoS One 10 4 e0118931A stable chimeric fibroblast growth factor (FGF) can successfully replace basic FGF in human pluripotent stem cell culture
Fibroblast growth factors (FGFs) are essential for maintaining self-renewal in human embryonic stem cells and induced pluripotent stem cells. Recombinant basic FGF (bFGF or FGF2) is conventionally used to culture pluripotent stem cells; however, because of the instability of bFGF, repeated addition of fresh bFGF into the culture medium is required in order to maintain its concentration. In this study, we demonstrate that a heat-stable chimeric variant of FGF, termed FGFC, can be successfully used for maintaining human pluripotent stem cells. FGFC is a chimeric protein composed of human FGF1 and FGF2 domains that exhibits higher thermal stability and protease resistance than do both FGF1 and FGF2. Both human embryonic stem cells and induced pluripotent stem cells were maintained in ordinary culture medium containing FGFC instead of FGF2. Comparison of cells grown in FGFC with those grown in conventional FGF2 media showed no significant differences in terms of the expression of pluripotency markers, global gene expression, karyotype, or differentiation potential in the three germ lineages. We therefore propose that FGFC may be an effective alternative to FGF2, for maintenance of human pluripotent stem cells.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Lechman ER et al. (DEC 2012) Cell stem cell 11 6 799--811Attenuation of miR-126 activity expands HSC in vivo without exhaustion.
Lifelong blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks, making them attractive candidate HSC regulators. We report that miR-126, a miRNA expressed in HSC and early progenitors, plays a pivotal role in restraining cell-cycle progression of HSC in vitro and in vivo. miR-126 knockdown by using lentiviral sponges increased HSC proliferation without inducing exhaustion, resulting in expansion of mouse and human long-term repopulating HSC. Conversely, enforced miR-126 expression impaired cell-cycle entry, leading to progressively reduced hematopoietic contribution. In HSC/early progenitors, miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway, attenuating signal transduction in response to extrinsic signals. These data establish that miR-126 sets a threshold for HSC activation and thus governs HSC pool size, demonstrating the importance of miRNA in the control of HSC function.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM Onyshchenko MI et al. (JAN 2012) Stem Cells International 2012 634914Stimulation of cultured h9 human embryonic stem cells with thyroid stimulating hormone does not lead to formation of thyroid-like cells.
The sodium-iodine symporter (NIS) is expressed on the cell membrane of many thyroid cancer cells, and is responsible for the radioactive iodine accumulation. However, treatment of anaplastic thyroid cancer is ineffective due to the low expression of NIS on cell membranes of these tumor cells. Human embryonic stem cells (ESCs) provide a potential vehicle to study the mechanisms of NIS expression regulation during differentiation. Human ESCs were maintained on feeder-independent culture conditions. RT-qPCR and immunocytochemistry were used to study differentiation marker expression, (125)I uptake to study NIS function. We designed a two-step protocol for human ESC differentiation into thyroid-like cells, as was previously done for mouse embryonic stem cells. First, we obtained definitive endoderm from human ESCs. Second, we directed differentiation of definitive endoderm cells into thyroid-like cells using various factors, with thyroid stimulating hormone (TSH) as the main differentiating factor. Expression of pluripotency, endoderm and thyroid markers and (125)I uptake were monitored throughout the differentiation steps. These approaches did not result in efficient induction of thyroid-like cells. We conclude that differentiation of human ESCs into thyroid cells cannot be induced by TSH media supplementation alone and most likely involves complicated developmental patterns that are yet to be understood.Catalog #: Product Name: 78001 Human/Mouse Recombinant Activin A 85850 ³¾°Õ±ð³§¸éâ„¢1 36254 DMEM/F-12 with 15 mM HEPES Catalog #: 78001 Product Name: Human/Mouse Recombinant Activin A Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 36254 Product Name: DMEM/F-12 with 15 mM HEPES Lioznov M et al. (JUL 2008) Bone marrow transplantation 42 2 121--8Transportation and cryopreservation may impair haematopoietic stem cell function and engraftment of allogeneic PBSCs, but not BM.
Recent data suggest that the practice of using frozen allogeneic grafts is becoming increasingly common among transplant centres. Therefore, we retrospectively analysed 31 frozen allogeneic PBSC and 8 BM grafts by flow cytometry with regard to their CD34+ content, membrane integrity (7-AAD) and stem cell-specific enzyme activity (aldehyde dehydrogenase, ALDH) in relation to individual transplantation results. Membrane integrity of CD34+ cells was significantly impaired in cryopreserved PBSC but not in BM compared to unfrozen allografts. In 9 out of 31 frozen PBSC (but none of the BM) grafts numbers of SSC(lo)ALDH(br) cells per kg body weight (BW) were significantly reduced while in the same grafts the numbers of CD34+ cells per kg BW were close to normal. Overall, 9 out of 33 patients (27%) who received unrelated PBSC allografts cryopreserved after transportation did not achieve engraftment. For comparison, primary graft failure was observed in our centre in only 7 out of 493 recipients (1.4%) of fresh allogeneic PBSC grafts. Moreover, we did not see any graft failure in patients receiving frozen/thawed BM or autologous PBSC transplants. We, therefore, conclude that PBSC grafts become much more sensitive to cryopreservation after transport and/or storage. Importantly, the engraftment potential of frozen HSC grafts may reliably be predicted by measuring ALDH activity. View PublicationCatalog #: Product Name: 01701 ALDEFLUORâ„¢ Assay Buffer 01700 ALDEFLUORâ„¢ Kit 01705 ALDEFLUORâ„¢ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUORâ„¢ Assay Buffer Catalog #: 01700 Product Name: ALDEFLUORâ„¢ Kit Catalog #: 01705 Product Name: ALDEFLUORâ„¢ DEAB Reagent Warren L et al. (NOV 2010) Cell stem cell 7 5 618--630Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine. ?? 2010 Elsevier Inc.Catalog #: Product Name: 04434 MethoCultâ„¢ H4434 Classic 27100 35 mm Culture Dishes 85850 ³¾°Õ±ð³§¸éâ„¢1 07913 Dispase (5 U/mL) Catalog #: 04434 Product Name: MethoCultâ„¢ H4434 Classic Catalog #: 27100 Product Name: 35 mm Culture Dishes Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 07913 Product Name: Dispase (5 U/mL) Sakai R et al. (MAR 2003) Toxicological sciences : an official journal of the Society of Toxicology 72 1 84--91TCDD treatment eliminates the long-term reconstitution activity of hematopoietic stem cells.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an endocrine disrupting chemical (EDC), can cause carcinogenesis, immunosuppression, and teratogenesis, through a ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR). Despite remarkable recent advances in stem cell biology, the influence of TCDD on hematopoietic stem cells (HSCs), which possess the ability to reconstitute long-term multilineage hematopoiesis, has not been well investigated. In this study we examined the influence of TCDD on HSCs enriched for CD34(-), c-kit(+), Sca-1(+), lineage negative (CD34-KSL) cells. The number of the CD34-KSL cells was found to be increased about four-fold upon a single oral administration of TCDD (40 micro g/kg body weight). Surprisingly, we found that these TCDD-treated cells almost lost long-term reconstitution activity. This defect was not present in AhR(-/-) mice. These findings suggest that modulation of AhR/ARNT system activity may have an effect on HSC function or survival.Catalog #: Product Name: 03434 MethoCultâ„¢ GF M3434 Catalog #: 03434 Product Name: MethoCultâ„¢ GF M3434 Jagtap S et al. (APR 2011) British Journal of Pharmacology 162 8 1743--56Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation.
BACKGROUND AND PURPOSE: Teratogenic substances induce adverse effects during the development of the embryo. Multilineage differentiation of human embryonic stem cells (hESCs) mimics the development of the embryo in vitro. Here, we propose a transcriptomic approach in hESCs for monitoring specific toxic effects of compounds as an alternative to traditional time-consuming and cost-intensive in vivo tests requiring large numbers of animals. This study was undertaken to explore the adverse effects of cytosine arabinoside (Ara-C) on randomly differentiated hESCs.backslashnbackslashnEXPERIMENTAL APPROACH: Human embryonic stem cells were used to investigate the effects of a developmental toxicant Ara-C. Sublethal concentrations of Ara-C were given for two time points, day 7 and day 14 during the differentiation. Gene expression was assessed with microarrays to determine the dysregulated transcripts in presence of Ara-C.backslashnbackslashnKEY RESULTS: Randomly differentiated hESCs were able to generate the multilineage markers. The low concentration of Ara-C (1 nM) induced the ectoderm and inhibited the mesoderm at day 14. The induction of ectodermal markers such as MAP2, TUBB III, PAX6, TH and NESTIN was observed with an inhibition of mesodermal markers such as HAND2, PITX2, GATA5, MYL4, TNNT2, COL1A1 and COL1A2. In addition, no induction of apoptosis was observed. Gene ontology revealed unique dysregulated biological process related to neuronal differentiation and mesoderm development. Pathway analysis showed the axon guidance pathway to be dysregulated.backslashnbackslashnCONCLUSIONS AND IMPLICATIONS: Our results suggest that hESCs in combination with toxicogenomics offer a sensitive in vitro developmental toxicity model as an alternative to traditional animal experiments.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Li Z et al. (JUN 2010) Journal of cellular and molecular medicine 14 6A 1338--46Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway.
This study investigated the effect of mechanical load on human mesenchymal stem cell (hMSC) differentiation under different exogenous transforming growth factor-beta1 (TGF-beta(1)) concentrations (0, 1 or 10 ng/ml).The role of the TGF-beta signalling pathway in this process was also studied. Human MSCs were seeded into fibrin-biodegradable polyurethane scaffolds at a cell density of 5 x 10(6) cells per scaffold and stimulated using our bioreactor. One hour of surface motion superimposed on cyclic compression was applied once a day over seven consecutive days. Scaffolds were analysed for gene expression, DNA content and glycosaminoglycan amount. Addition of TGF-beta(1) in the culture medium was sufficient to induce chondrogenesis of hMSCs. Depending on the TGF-beta(1) concentration of the culture medium, mechanical load stimulated chondrogenesis of hMSCs compared to the unloaded scaffolds, with a much stronger effect on gene expression at lower TGF-beta(1) concentrations. With TGF-beta(1) absent in the culture medium, mechanical load stimulated gene transcripts and protein synthesis of TGF-beta(1) and TGF-beta(3). TGF-beta type I receptor inhibitor LY364947 blocked the up-regulation on TGF-beta(1) and TGF-beta(3) production stimulated by mechanical load, and also blocked the chondrogenesis of hMSCs. Taken together, these findings suggest that mechanical load promotes chondrogenesis of hMSCs through TGF-beta pathway by up-regulating TGF-beta gene expression and protein synthesis.Catalog #: Product Name: 72592 LY364947 Catalog #: 72592 Product Name: LY364947 Tadeu AMB and Horsley V (SEP 2013) Development (Cambridge, England) 140 18 3777--86Notch signaling represses p63 expression in the developing surface ectoderm.
The development of the mature epidermis requires a coordinated sequence of signaling events and transcriptional changes to specify surface ectodermal progenitor cells to the keratinocyte lineage. The initial events that specify epidermal keratinocytes from ectodermal progenitor cells are not well understood. Here, we use both developing mouse embryos and human embryonic stem cells (hESCs) to explore the mechanisms that direct keratinocyte fate from ectodermal progenitor cells. We show that both hESCs and murine embryos express p63 before keratin 14. Furthermore, we find that Notch signaling is activated before p63 expression in ectodermal progenitor cells. Inhibition of Notch signaling pharmacologically or genetically reveals a negative regulatory role for Notch signaling in p63 expression during ectodermal specification in hESCs or mouse embryos, respectively. Taken together, these data reveal a role for Notch signaling in the molecular control of ectodermal progenitor cell specification to the epidermal keratinocyte lineage. View PublicationCatalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Items 145 to 156 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.