References
Items 133 to 144 of 7892 total
- Gambone CJ et al. ( 2002) Molecular pharmacology 61 2 334--342
Unique property of some synthetic retinoids: activation of the aryl hydrocarbon receptor pathway.
Potential pharmacological applications in the areas of oncology, dermatology, diabetes, and atherosclerosis of synthetic analogs of retinoic acid that target a specific nuclear receptor and/or biological response have generated great interest in the development of new retinoid and rexinoid drugs. The pan-retinoic acid receptor antagonist AGN 193109 has been previously reported to elevate CYP1A1 levels, implicating the aryl hydrocarbon receptor (AhR) as an additional target for this retinoid. AhR is a cytosolic ligand-dependent transcription factor that, in conjunction with the AhR nuclear translocator (Arnt), binds to dioxin response elements (DREs) located in the promoter region of target genes, such as CYP1A1, and induces their transcription. The purpose of these studies was to determine whether additional synthetic retinoids were capable of elevating CYP1A1 levels and to examine the mechanism of this increase in CYP1A. Two additional retinoids, AGN 190730 and AGN 192837, were found to be potent inducers of DRE-driven transcriptional activity; AGN 190730 was the most potent. Moreover, electrophoretic mobility-shift assays demonstrate that AGN 190730 can transform AhR into its active DNA recognition form. In addition, trypsin digestion of AGN 190730-treated AhR reveals a conformational change in the protein similar to the conformational change of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-bound AhR. Finally, competitive binding studies demonstrate that AGN 190730 can inhibit the binding of TCDD to AhR. The sum of the data demonstrates that some synthetic retinoids in addition to activating the retinoic acid receptor/retinoid X receptor pathway are capable of binding to AhR and activating the AhR/Arnt pathway.Catalog #: Product Name: 73102 EC23 Catalog #: 73102 Product Name: EC23 Noel JG et al. (OCT 2001) Inflammation 25 5 339--49Thermal injury increases the number of eosinophil progenitors in rat spleen and bone marrow.
We have investigated the effects of thermal injury upon myelopoiesis. IL-3, GM-CSF, and IL-5 were used to stimulate myeloid colony formation. IL-3 induces early myeloid progenitors and a more developed myeloid progenitor, the granulocyte-macrophage colony-forming unit (GM-CFU), to multiply and develop into mature myeloid cells. GM-CSF induces GM-CFU to become mature myeloid cells, while IL-5 induces eosinophil progenitors to become mature eosinophils. Stem Cell Factor (SCF) + IL-6 and FLT3 ligand, which have no effect on colony formation by themselves, were used to enhance the effects of IL-3 and GM-CSF, respectively. We found that thermal injury increased the number of early myeloid progenitors and GM-CFU in the spleen with either IL-3 or GM-CSF as a stimulant. Thermal injury increased the number of early myeloid progenitors in the bone marrow when GM-CSF, but not IL-3, was used to stimulate colony growth. Also, thermal injury increased the numbers of eosinophil progenitors in rat spleen and bone marrow and increased splenic levels of IL-5 mRNA.Catalog #: Product Name: 03434 MethoCultâ„¢ GF M3434 03134 MethoCultâ„¢ M3134 03231 MethoCultâ„¢ M3231 03234 MethoCultâ„¢ M3234 03334 MethoCultâ„¢ M3334 03236 MethoCultâ„¢ SF M3236 Catalog #: 03434 Product Name: MethoCultâ„¢ GF M3434 Catalog #: 03134 Product Name: MethoCultâ„¢ M3134 Catalog #: 03231 Product Name: MethoCultâ„¢ M3231 Catalog #: 03234 Product Name: MethoCultâ„¢ M3234 Catalog #: 03334 Product Name: MethoCultâ„¢ M3334 Catalog #: 03236 Product Name: MethoCultâ„¢ SF M3236 Arrigoni O and De Tullio MC (JAN 2002) Biochimica et biophysica acta 1569 1-3 1--9Ascorbic acid: much more than just an antioxidant.
Vitamin C (ascorbic acid (AA)) is very popular for its antioxidant properties. Consequently, many other important aspects of this multifaceted molecule are often underestimated or even ignored. In the present paper, we have tried to bring to the foreground some of these aspects, including the peculiarities of the AA biosynthetic pathway in different organisms, the remarkable function of AA as a co-substrate of many important dioxygenases, the role of AA-regenerating enzymes and the known pathways of AA catabolism, as well as the intriguing function of AA in gene expression.Villerbu N et al. (FEB 2002) International journal of cancer 97 6 761--9Cellular effects of purvalanol A: a specific inhibitor of cyclin-dependent kinase activities.
We have studied the effects of purvalanol A on the cell cycle progression, proliferation and viability. In synchronized cells, purvalanol A induced a reversible arrest the progression in G1 and G2 phase of the cell cycle, but did not prevent the completion of DNA synthesis in S-phase cells. The specificity of action of the drug was supported by the selective inhibition of the phosphorylation of cyclin-dependent kinase (cdk) substrates such as Rb and cyclin E. The cell contents of cyclins D1 and E were lower in cells incubated with purvalanol A compared to controls, but the level of the cdk inhibitory protein p21(WAF1/CIP1) was increased, indicating that the drug did not cause a general inhibition of gene expression. Purvalanol A did not inhibit transcription under cell-free conditions. This compound, however, caused an inhibition of the estradiol-induced expression of an integrated luciferase gene, suggesting that cdk or related enzymes may participate in the regulation of the activity of certain promoters. When exponentially growing cells, both mouse fibroblasts and human cancer cell lines, were incubated with purvalanol A for prolonged periods of time (24 hr), a lasting inhibition of cell proliferation as well as cell death were observed. In contrast, a 24 hr incubation of quiescent (non-transformed) cells with purvalanol A did not prevent their resumption of cell cycle after removal of the drug.Dadaglio G et al. (MAR 2002) Journal of immunology (Baltimore, Md. : 1950) 168 5 2219--24Efficient in vivo priming of specific cytotoxic T cell responses by neonatal dendritic cells.
In early life, a high susceptibility to infectious diseases as well as a poor capacity to respond to vaccines are generally observed as compared with observations in adults. The mechanisms underlying immune immaturity have not been fully elucidated and could be due to the immaturity of the T/B cell responses and/or to a defect in the nature and quality of Ag presentation by the APC. This prompted us to phenotypically and functionally characterize early life murine dendritic cells (DC) purified from spleens of 7-day-old mice. We showed that neonatal CD11c(+) DC express levels of costimulatory molecules and MHC molecules similar to those of adult DC and are able to fully maturate after LPS activation. Furthermore, we demonstrated that neonatal DC can efficiently take up, process, and present Ag to T cells in vitro and induce specific CTL responses in vivo. Although a reduced number of these cells was observed in the spleen of neonatal mice as compared with adults, this study clearly shows that neonatal DC have full functional capacity and may well prime Ag-specific naive T cells in vivo.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM Carlomagno F et al. ( 2002) Cancer research 62 4 1077--1082The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes.
Oncogenic activation of the RET receptor tyrosine kinase is common in different human cancers. We found that the pyrazolo-pyrimidine PP1 inhibited RET-derived oncoproteins with a half maximal inhibitor concentration of 80 nM. Furthermore, RET/PTC3-transformed cells treated with 5 microM of PP1 lost proliferative autonomy and showed morphological reversion. PP1 prevented the growth of two human papillary thyroid carcinoma cell lines that carry spontaneous RET/PTC1 rearrangements and blocked anchorage-independent growth and tumorigenicity in nude mice of NIH3T3 fibroblasts expressing the RET/PTC3 oncogene. These findings suggest targeting RET oncogenes with PP1 or related compounds as a novel treatment strategy for RET-associated neoplasms.Catalog #: Product Name: 73112 PP1 Catalog #: 73112 Product Name: PP1 Tokumitsu H et al. (MAY 2002) The Journal of biological chemistry 277 18 15813--8STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase.
STO-609, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) was synthesized, and its inhibitory properties were investigated both in vitro and in vivo. STO-609 inhibits the activities of recombinant CaM-KK alpha and CaM-KK beta isoforms, with K(i) values of 80 and 15 ng/ml, respectively, and also inhibits their autophosphorylation activities. Comparison of the inhibitory potency of the compound against various protein kinases revealed that STO-609 is highly selective for CaM-KK without any significant effect on the downstream CaM kinases (CaM-KI and -IV), and the IC(50) value of the compound against CaM-KII is approximately 10 microg/ml. STO-609 inhibits constitutively active CaM-KK alpha (glutathione S-transferase (GST)-CaM-KK-(84-434)) as well as the wild-type enzyme. Kinetic analysis indicates that the compound is a competitive inhibitor of ATP. In transfected HeLa cells, STO-609 suppresses the Ca(2+)-induced activation of CaM-KIV in a dose-dependent manner. In agreement with this observation, the inhibitor significantly reduces the endogenous activity of CaM-KK in SH-SY5Y neuroblastoma cells at a concentration of 1 microg/ml (approximately 80% inhibitory rate). Taken together, these results indicate that STO-609 is a selective and cell-permeable inhibitor of CaM-KK and that it may be a useful tool for evaluating the physiological significance of the CaM-KK-mediated pathway in vivo as well as in vitro.Hennequin LF et al. ( 2002) Journal of medicinal chemistry 45 6 1300--1312Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors.
We have previously shown that 4-anilinoquinazolines can be potent inhibitors of vascular endothelial growth factor (VEGF) receptor (Flt-1 and KDR) tyrosine kinase activity. A novel subseries of 4-anilinoquinazolines that possess basic side chains at the C-7 position of the quinazoline nucleus have been synthesized. This subseries contains potent, nanomolar inhibitors of KDR (median IC(50) 0.02 microM, range 0.001-0.04 microM), which are comparatively less potent vs Flt-1 tyrosine kinase (median IC(50) 0.55 microM, range 0.02-1.6 microM). The compounds also retain some inhibitory activity against the tyrosine kinase associated to the endothelial growth factor receptor (EGFR) (median IC(50) 0.2 microM, range 0.075-0.8 microM) but demonstrate selectivity vs that associated to the FGF receptor 1 (median IC(50) 2.5 microM, range 0.9-19 microM). This selectivity profile is also evident in a growth factor-stimulated human endothelial cell (HUVEC) proliferation assay (i.e., inhibition of VEGF textgreater EGF textgreater FGF), with inhibition of VEGF-induced proliferation being achieved at nanomolar concentrations (median IC(50) 0.06 microM). Further examination of compound 2 (ZD6474) in recombinant enzyme assays revealed excellent selectivity for the inhibition of KDR tyrosine kinase (IC(50) 0.04 microM) vs the kinase activity of erbB2, MEK, CDK-2, Tie-2, IGFR-1R, PDK, PDGFRbeta, and AKT (IC(50) range: 1.1 to textgreater100 microM). Anilinoquinazolines possessing basic C-7 side chains exhibited markedly improved aqueous solubility over previously described anilinoquinazolines possessing neutral C-7 side chains (up to 500-fold improvement at pH 7.4). In addition, aqueous solubility of the neutral fraction present at pH 7.4 of the basic subseries of anilinoquinazoline proved to be higher than that of the neutral analogue 1 (ZD4190). Oral administration of representative compounds to mice (50 mg/kg) produced plasma levels between 0.2 and 3 microM at 24 h after dosing. Our development candidate 2 demonstrated a very attractive in vitro profile combined with excellent solubility (330 microM at pH 7.4) and good oral bioavailability in rat and dog (textgreater 80 and textgreater 50%, respectively). This compound demonstrated highly significant, dose-dependent, antitumor activity in athymic mice. Once daily oral administration of 100 mg/kg of compound 2 for 21 days inhibited the growth of established Calu-6 lung carcinoma xenografts by 79% (P textless 0.001, Mann Whitney rank sum test), and substantial inhibition (36%, P textless 0.02) was evident with 12.5 mg/kg/day.Catalog #: Product Name: 73532 Vandetanib Catalog #: 73532 Product Name: Vandetanib Noel JG et al. ( ) The Journal of burn care & rehabilitation 23 2 75--86Changes in bone marrow-derived myeloid cells from thermally injured rats reflect changes in the progenitor cell population.
Bone marrow progenitor cells develop into mature tissue myeloid cells under the influence of colony-stimulating factors. Cytokines that are elevated post-thermal injury have been shown to influence this process. We hypothesize that thermal injury alters myelopoiesis at the level of the progenitor cell. These differences should be visible after in vitro cultures that include colony-stimulating factors. Prior to culture, bone marrow at postburn day 1 (PBD1) was assessed for cell surface markers and the levels of myeloid progenitors. After culture in granulocyte/macrophage-stimulating colony-stimulating factor, the cell surface markers of the cultured cells were determined. PBD1 marrow from thermally injured rats had more progenitor cells responsive to granulocyte/macrophage-stimulating colony-stimulating factor than did sham. Cultured PBD1 marrow produced more CD90(br) MY(br) CD45(dim) CD4(-) MHCII(-) CD11b(dim) eosinophils than did sham. Cultured bone marrow from thermally injured animals produces myeloid cells with an altered phenotype. Similar changes in myelopoiesis may take place in vivo.Catalog #: Product Name: 03774 MethoCultâ„¢ GF R3774 Catalog #: 03774 Product Name: MethoCultâ„¢ GF R3774 Nakagawa H et al. (MAR 2002) Biochemical and biophysical research communications 292 1 94--101Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin-3-gallate to induce osteoclastic cell death.
To propose candidates for the prevention or treatment of osteoporosis, we have screened compounds naturally in food for their ability to regulate the differentiation and function of osteoclasts. One of the major green tea flavonoids, (-)-epigallocatechin-3-gallate (EGCG), was found to induce apoptotic cell death of osteoclast-like multinucleated cells after 24 h treatment in a dose-dependent manner (25-100 microM), whereas osteoblasts were not affected. In the present study, we report for the first time a novel cell-death-inducing mechanism triggered by EGCG. The induction of apoptosis by EGCG was suppressed by pretreatment of catalase or calcitonin. It was also suppressed by Fe(III) and Fe(II) chelators. Furthermore, EGCG promoted the reduction of Fe(III) into Fe(II), and the combination of EGCG/Fe(III)/H(2)O(2) induced single-strand DNA breakage in a cell free system. These results indicate that the Fenton reaction is primarily involved in EGCG-induced osteoclastic cell death.Catalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate Lai Z et al. (MAR 2002) Proceedings of the National Academy of Sciences of the United States of America 99 6 3651--6Design of an HIV-1 lentiviral-based gene-trap vector to detect developmentally regulated genes in mammalian cells.
The recent development of HIV-1 lentiviral vectors is especially useful for gene transfer because they achieve efficient integration into nondividing cell genomes and successful long-term expression of the transgene. These attributes make the vector useful for gene delivery, mutagenesis, and other applications in mammalian systems. Here we describe two HIV-1-based lentiviral vector derivatives, pZR-1 and pZR-2, that can be used in gene-trap experiments in mammalian cells in vitro and in vivo. Each lentiviral gene-trap vector contains a reporter gene, either beta-lactamase or enhanced green fluorescent protein (EGFP), that is inserted into the U3 region of the 3' long terminal repeat. Both of the trap vectors readily integrate into the host genome by using a convenient infection technique. Appropriate insertion of the vector into genes causes EGFP or beta-lactamase expression. This technique should facilitate the rapid enrichment and cloning of the trapped cells and provides an opportunity to select subpopulations of trapped cells based on the subcellular localization of reporter genes. Our findings suggest that the reporter gene is driven by an upstream, cell-specific promoter during cell culture and cell differentiation, which further supports the usefulness of lentivirus-based gene-trap vectors. Lentiviral gene-trap vectors appear to offer a wealth of possibilities for the study of cell differentiation and lineage commitment, as well as for the discovery of new genes.Pargellis C et al. (APR 2002) Nature structural biology 9 4 268--72Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site.
The p38 MAP kinase plays a crucial role in regulating the production of proinflammatory cytokines, such as tumor necrosis factor and interleukin-1. Blocking this kinase may offer an effective therapy for treating many inflammatory diseases. Here we report a new allosteric binding site for a diaryl urea class of highly potent and selective inhibitors against human p38 MAP kinase. The formation of this binding site requires a large conformational change not observed previously for any of the protein Ser/Thr kinases. This change is in the highly conserved Asp-Phe-Gly motif within the active site of the kinase. Solution studies demonstrate that this class of compounds has slow binding kinetics, consistent with the requirement for conformational change. Improving interactions in this allosteric pocket, as well as establishing binding interactions in the ATP pocket, enhanced the affinity of the inhibitors by 12,000-fold. One of the most potent compounds in this series, BIRB 796, has picomolar affinity for the kinase and low nanomolar inhibitory activity in cell culture.Catalog #: Product Name: 72682 BIRB-796 Catalog #: 72682 Product Name: BIRB-796 Items 133 to 144 of 7892 total
Shop ByFilter Results- Resource Type
-
- Reference 7892 items
- Product Type
-
- 24 items
- Area of Interest
-
- 11 items
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 5 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- 0 11 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 1 item
- EasySep 750 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 33 items
- MesenCult 133 items
- MethoCult 440 items
- MyeloCult 61 items
- MyoCult 2 items
- NeuroCult 350 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 77 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 20 items
- RosetteSep 252 items
- STEMdiff 47 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1447 items
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 12 items
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.