References
Items 1 to 12 of 6390 total
- Baatz JE et al. (JUL 2014) In vivo (Athens, Greece) 28 4 411--423
Cryopreservation of viable human lung tissue for versatile post-thaw analyses and culture.
Clinical trials are currently used to test therapeutic efficacies for lung cancer, infections and diseases. Animal models are also used as surrogates for human disease. Both approaches are expensive and time-consuming. The utility of human biospecimens as models is limited by specialized tissue processing methods that preserve subclasses of analytes (e.g. RNA, protein, morphology) at the expense of others. We present a rapid and reproducible method for the cryopreservation of viable lung tissue from patients undergoing lobectomy or transplant. This method involves the pseudo-diaphragmatic expansion of pieces of fresh lung tissue with cryoprotectant formulation (pseudo-diaphragmatic expansion-cryoprotectant perfusion or PDX-CP) followed by controlled-rate freezing in cryovials. Expansion-perfusion rates, volumes and cryoprotectant formulation were optimized to maintain tissue architecture, decrease crystal formation and increase long-term cell viability. Rates of expansion of 4 cc/min or less and volumes ranging from 0.8-1.2 × tissue volume were well-tolerated by lung tissue obtained from patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis, showing minimal differences compared to standard histopathology. Morphology was greatly improved by the PDX-CP procedure compared to simple fixation. Fresh versus post-thawed lung tissue showed minimal differences in histology, RNA integrity numbers and post-translational modified protein integrity (2-dimensional differential gel electrophoresis). It was possible to derive numerous cell types, including alveolar epithelial cells, fibroblasts and stem cells, from the tissue for at least three months after cryopreservation. This new method should provide a uniform, cost-effective approach to the banking of biospecimens, with versatility to be amenable to any post-acquisition process applicable to fresh tissue samples.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Zhao Z et al. (JAN 2012) PLoS ONE 7 3 e33953Maxadilan prevents apoptosis in iPS cells and shows no effects on the pluripotent state or karyotype
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a structurally endogenous peptide with many biological roles. Maxadilan, a 61-amino acid vasodilatory peptide, specifically activates the PACAP type I receptor (PAC1). Although PAC1 has been identified in embryonic stem cells, little is known about its presence or effects in human induced pluripotent stem (iPS) cells. In the present study, we investigated the expression of PAC1 in human iPS cells by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. To study the physiological effects mediated by PAC1, we evaluated the role of maxadilan in preventing apoptotic cell death induced by ultraviolet C (UVC). After exposure to UVC, the iPS cells showed a marked reduction in cell viability and a parallel increase of apoptotic cells, as demonstrated by WST-8 analysis, annexin V/propidium iodide (PI) analysis and the terminal transferase dUTP nick end labeling (TUNEL) assay. The addition of 30 nM of maxadilan dramatically increased iPS cell viability and reduced the percentage of apoptotic cells. The anti-apoptotic effects of maxadilan were correlated to the downregulation of caspase-3 and caspase-9. Concomitantly, immunofluorescence, western blot analysis, real-time quantitative polymerase chain reaction (RT-qPCR) analysis and in vitro differentiation results showed that maxadilan did not affect the pluripotent state of iPS cells. Moreover, karyotype analysis showed that maxadilan did not affect the karyotype of iPS cells. In summary, these results demonstrate that PAC1 is present in iPS cells and that maxadilan effectively protects iPS cells against UVC-induced apoptotic cell death while not affecting the pluripotent state or karyotype.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Goodman ML et al. (JUL 2008) Stem cells and development 18 1 195--200Novel method of murine embryonic stem cell-derived osteoclast development.
Murine embryonic stem (mES) cells are self-renewing pluripotent cells that bear the capacity to differentiate into ectoderm-, endoderm-, and mesoderm-derived tissues. In suspension culture, embryonic stem (ES) cells grow into spherical embryoid bodies (EBs) and are useful for the study of specific gene products in the development and function of various tissue types. Osteoclasts are hematopoietic stem cell-derived cells that participate in bone turnover by secreting resorptive molecules such as hydrochloric acid and acidic proteases, which degrade the bone extracellular matrix. Aberrant osteoclast function leads to dysplastic, erosive, and sclerosing bone diseases. Previous studies have reported the derivation of osteoclasts from mES cells; however, most of these protocols require coculture with stromal cell lines. We describe two simplified, novel methods of stromal cell-independent ES cell-derived osteoclast development.Tian L et al. ( 2016) 1353 271--283In Vitro Modeling of Alcohol-Induced Liver Injury using Human-Induced Pluripotent Stem Cells
Alcohol consumption has long been associated with a majority of liver diseases and has been found to influence both fetal and adult liver functions. In spite of being one of the major causes of morbidity and mortality in the world, currently, there are no effective strategies that can prevent or treat alcoholic liver disease (ALD), due to a lack of human-relevant research models. Recent success in generation of functionally active mature hepatocyte-like cells from human-induced pluripotent cells (iPSCs) enables us to better understand the effects of alcohol on liver functions. Here, we describe the method and effect of alcohol exposure on multistage hepatic cell types derived from human iPSCs, in an attempt to recapitulate the early stages of liver tissue injury associated with ALD. We exposed different stages of iPSC-induced hepatic cells to ethanol at a pathophysiological concentration. In addition to stage-specific molecular markers, we measured several key cellular parameters of hepatocyte injury, including apoptosis, proliferation, and lipid accumulation.Woltjen K et al. (APR 2009) Nature 458 7239 766--70piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells.
Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision, we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.Pearce DJ et al. ( ) Stem cells (Dayton, Ohio) 23 6 752--60Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples.
Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme that is responsible for the oxidation of intracellular aldehydes. Elevated levels of ALDH have been demonstrated in murine and human progenitor cells compared with other hematopoietic cells, and this is thought to be important in chemoresistance. A method for the assessment of ALDH activity in viable cells recently has been developed and made commercially available in a kit format. In this study, we confirmed the use of the ALDH substrate kit to identify cord blood stem/progenitor cells. Via multicolor flow cytometry of cord blood ALDH+ cells, we have expanded on their phenotypic analysis. We then assessed the incidence, morphology, phenotype, and nonobese diabetic/ severe combined immunodeficiency engraftment ability of ALDH+ cells from acute myeloid leukemia (AML) samples. AML samples had no ALDH+ cells at all, an extremely rare nonmalignant stem/progenitor cell population, or a less rare, leukemic stem cell population. Hence, in addition to identifying nonmalignant stem cells within some AML samples, a high ALDH activity also identifies some patients' CD34+/ CD38- leukemic stem cells. The incidence of normal or leukemic stem cells with an extremely high ALDH activity may have important implications for resistance to chemotherapy. Identification and isolation of leukemic cells on the basis of ALDH activity provides a tool for their isolation and further analysis. View PublicationCatalog #: Product Name: 01701 ALDEFLUORâ„¢ Assay Buffer 01700 ALDEFLUORâ„¢ Kit 01705 ALDEFLUORâ„¢ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUORâ„¢ Assay Buffer Catalog #: 01700 Product Name: ALDEFLUORâ„¢ Kit Catalog #: 01705 Product Name: ALDEFLUORâ„¢ DEAB Reagent Laping NJ et al. (JUL 2002) Molecular pharmacology 62 1 58--64Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542.
Transforming growth factor beta1 (TGF-beta1) is a potent fibrotic factor responsible for the synthesis of extracellular matrix. TGF-beta1 acts through the TGF-beta type I and type II receptors to activate intracellular mediators, such as Smad proteins, the p38 mitogen-activated protein kinase (MAPK), and the extracellular signal-regulated kinase pathway. We expressed the kinase domain of the TGF-beta type I receptor [activin receptor-like kinase (ALK)5] and the substrate, Smad3, and determined that SB-431542 is a selective inhibitor of Smad3 phosphorylation with an IC50 of 94 nM. It inhibited TGF-beta1-induced nuclear Smad3 localization. The p38 mitogen-activated protein kinase inhibitors SB-203580 and SB-202190 also inhibit phosphorylation of Smad3 by ALK5 with IC50 values of 6 and 3 microM, respectively. This suggests that these p38 MAPK inhibitors must be used at concentrations of less than 10 microM to selectively address p38 MAPK mechanisms. However, the p38 MAPK inhibitor SB-242235 did not inhibit ALK5. To evaluate the relative contribution of Smad signaling and p38 MAPK signaling in TGF-beta1-induced matrix production, the effect of SB-431542 was compared with that of SB-242235 in renal epithelial carcinoma A498 cells. All compounds inhibited TGF-beta1-induced fibronectin (FN) mRNA, indicating that FN synthesis is mediated in part via the p38 MAPK pathway. In contrast, SB-431542, but not the selective p38 MAPK inhibitor SB-242235, inhibited TGF-beta1-induced collagen Ialpha1 (col Ialpha1). These data indicate that some matrix markers that are stimulated by TGF-beta1 are mediated via the p38 MAPK pathway (i.e., FN), whereas others seem to be activated via ALK5 signaling independent of the p38 MAPK pathway (i.e., col Ialpha1).Catalog #: Product Name: 72232 SB431542 (Hydrate) Catalog #: 72232 Product Name: SB431542 (Hydrate) Carotta S et al. (SEP 2004) Blood 104 6 1873--80Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells.
Differentiating embryonic stem (ES) cells are an increasingly important source of hematopoietic progenitors, useful for both basic research and clinical applications. Besides their characterization in colony assays, protocols exist for the cultivation of lymphoid, myeloid, and erythroid cells. With the possible exception of mast cells, however, long-term expansion of pure hematopoietic progenitors from ES cells has not been possible without immortalization caused by overexpression of exogenous genes. Here, we describe for the first time an efficient yet easy strategy to generate mass cultures of pure, immature erythroid progenitors from mouse ES cells (ES-EPs), using serum-free medium plus recombinant cytokines and hormones. ES-EPs represent long-lived, adult, definitive erythroid progenitors that resemble immature erythroid cells expanding in vivo during stress erythropoiesis. When exposed to terminal differentiation conditions, ES-EPs differentiated into mature, enucleated erythrocytes. Importantly, ES-EPs injected into mice did not exhibit tumorigenic potential but differentiated into normal erythrocytes. Both the virtually unlimited supply of cells and the defined culture conditions render our system a valuable tool for the analysis of factors influencing proliferation and maturation of erythroid progenitors. In addition, the system allows detailed characterization of processes during erythroid proliferation and differentiation using wild-type (wt) and genetically modified ES cells.Catalog #: Product Name: 03434 MethoCultâ„¢ GF M3434 03234 MethoCultâ„¢ M3234 Catalog #: 03434 Product Name: MethoCultâ„¢ GF M3434 Catalog #: 03234 Product Name: MethoCultâ„¢ M3234 Choi H et al. (AUG 2013) Stem Cells and Development 22 15 2112--2120Coenzyme Q10 Restores Amyloid Beta-Inhibited Proliferation of Neural Stem Cells by Activating the PI3K Pathway
Neurogenesis in the adult brain is important for memory and learning, and the alterations in neural stem cells (NSCs) may be an important part of Alzheimer's disease pathogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway has been suggested to play an important role in neuronal cell survival and is highly involved in adult neurogenesis. Recently, coenzyme Q10 (CoQ10) was found to affect the PI3K pathway. We investigated whether CoQ10 could restore amyloid β (Aβ)25-35 oligomer-inhibited proliferation of NSCs by focusing on the PI3K pathway. To evaluate the effects of CoQ10 on Aβ25-35 oligomer-inhibited proliferation of NSCs, NSCs were treated with several concentrations of CoQ10 and/or Aβ25-35 oligomers. BrdU labeling, Colony Formation Assays, and immunoreactivity of Ki-67, a marker of proliferative activity, showed that NSC proliferation decreased with Aβ25-35 oligomer treatment, but combined treatment with CoQ10 restored it. Western blotting showed that CoQ10 treatment increased the expression levels of p85α PI3K, phosphorylated Akt (Ser473), phosphorylated glycogen synthase kinase-3β (Ser9), and heat shock transcription factor, which are proteins related to the PI3K pathway in Aβ25-35 oligomers-treated NSCs. To confirm a direct role for the PI3K pathway in CoQ10-induced restoration of proliferation of NSCs inhibited by Aβ25-35 oligomers, NSCs were pretreated with a PI3K inhibitor, LY294002; the effects of CoQ10 on the proliferation of NSCs inhibited by Aβ25-35 oligomers were almost completely blocked. Together, these results suggest that CoQ10 restores Aβ25-35 oligomer-inhibited proliferation of NSCs by activating the PI3K pathway.Catalog #: Product Name: 05700 NeuroCultâ„¢ Basal Medium (Mouse & Rat) 05701 NeuroCultâ„¢ Proliferation Supplement (Mouse & Rat) 05702 NeuroCultâ„¢ Proliferation Kit (Mouse & Rat) Catalog #: 05700 Product Name: NeuroCultâ„¢ Basal Medium (Mouse & Rat) Catalog #: 05701 Product Name: NeuroCultâ„¢ Proliferation Supplement (Mouse & Rat) Catalog #: 05702 Product Name: NeuroCultâ„¢ Proliferation Kit (Mouse & Rat) Mace EM et al. (NOV 2016) The Journal of clinical investigationBiallelic mutations in IRF8 impair human NK cell maturation and function.
Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8-/-, but not Irf8+/-, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense.Catalog #: Product Name: 15025 RosetteSepâ„¢ Human NK Cell Enrichment Cocktail Catalog #: 15025 Product Name: RosetteSepâ„¢ Human NK Cell Enrichment Cocktail Milush JM et al. (NOV 2009) Blood 114 23 4823--31Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4.
The lack of natural killer (NK) cell-specific markers, as well as the overlap among several common surface antigens and functional properties, has obscured the delineation between NK cells and dendritic cells. Here, novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells, which lack CD7. In contrast to CD7+CD56+ NK cells, CD7(neg)CD56+ cells lack expression of NK cell-associated markers, but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7, we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells, indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally, only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore, using CD7 to separate CD56+ NK cells and CD56+ myeloid cells, we demonstrate that unlike resting CD7+CD56+ NK cells, the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells, thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.Catalog #: Product Name: 19051 EasySepâ„¢ Human T Cell Enrichment Kit Catalog #: 19051 Product Name: EasySepâ„¢ Human T Cell Enrichment Kit Wang W et al. (MAR 2017) Stem cells and development 26 6 394--404Development of Islet Organoids from H9 Human Embryonic Stem Cells in Biomimetic 3D Scaffolds.
Success in the differentiating human embryonic stem cells (hESCs) into insulin-secreting β cells raises new hopes for diabetes treatment. In this work, we demonstrated the feasibility of developing islet organoids from hESCs within biomimetic 3D scaffolds. We showed that such a 3D microenvironment is critical to the generation of pancreatic endoderm and endocrine from hESCs. The organoids formed consisted of pancreatic α, β, δ, and pancreatic polypeptide (PP) cells. A high-level co-expression of PDX1, NKX6.1, and NGN3 in these cells suggests the characteristics of pancreatic β cells. More importantly, most insulin-secreting cells generated did not express glucagon, somatostatin, or PP. The expression of mature β cell marker genes such as Pdx1, Ngn3, Insulin, MafA, and Glut2 was detected in these 3D-induced cell clusters. A high-level expression of C-peptide confirmed the de novo endogenous insulin production in these 3D induced cells. Insulin-secretory granules, an indication of β cell maturity, were detected in these cells as well. Glucose challenging experiments suggested that these cells are sensitive to glucose levels due to their elevated maturity. Exposing the cells to a high concentration of glucose induced a sharp increase in insulin secretion.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Items 1 to 12 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Product Type
-
- 24 items
- Area of Interest
-
- 11 items
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- 0 11 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 1 item
- EasySep 751 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 33 items
- MesenCult 133 items
- MethoCult 440 items
- MyeloCult 61 items
- MyoCult 2 items
- NeuroCult 350 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 77 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 20 items
- RosetteSep 252 items
- STEMdiff 47 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1447 items
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 12 items
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.