References
Items 13 to 24 of 6390 total
- Yang K et al. (JAN 2018) Biosensors & bioelectronics 99 259--267
Mkit: A cell migration assay based on microfluidic device and smartphone.
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications.Catalog #: Product Name: 19666 EasySepâ„¢ Direct Human Neutrophil Isolation Kit Catalog #: 19666 Product Name: EasySepâ„¢ Direct Human Neutrophil Isolation Kit M. K. Wetzel-Smith et al. (DEC 2014) Nature medicine 20 12 1452--7A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death.
We have identified a rare coding mutation, T835M (rs137875858), in the UNC5C netrin receptor gene that segregated with disease in an autosomal dominant pattern in two families enriched for late-onset Alzheimer's disease and that was associated with disease across four large case-control cohorts (odds ratio = 2.15, Pmeta = 0.0095). T835M alters a conserved residue in the hinge region of UNC5C, and in vitro studies demonstrate that this mutation leads to increased cell death in human HEK293T cells and in rodent neurons. Furthermore, neurons expressing T835M UNC5C are more susceptible to cell death from multiple neurotoxic stimuli, including $\beta$-amyloid (A$\beta$), glutamate and staurosporine. On the basis of these data and the enriched hippocampal expression of UNC5C in the adult nervous system, we propose that one possible mechanism in which T835M UNC5C contributes to the risk of Alzheimer's disease is by increasing susceptibility to neuronal cell death, particularly in vulnerable regions of the Alzheimer's disease brain.Catalog #: Product Name: 07801 ³¢²â³¾±è³ó´Ç±è°ù±ð±èâ„¢ 85450 SepMateâ„¢-50 (IVD) 86450 SepMateâ„¢-50 (RUO) Catalog #: 07801 Product Name: ³¢²â³¾±è³ó´Ç±è°ù±ð±èâ„¢ Catalog #: 85450 Product Name: SepMateâ„¢-50 (IVD) Catalog #: 86450 Product Name: SepMateâ„¢-50 (RUO) Varga E et al. (OCT 2016) Stem cell research 17 3 482--484Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 1-year-old male with pathogenic IDS mutation.
Peripheral blood was collected from a 1-year-old male patient with an X-linked recessive mutation of Iduronate 2-sulfatase (IDS) gene (NM000202.7(IDS):c.85CtextgreaterT) causing MPS II (OMIM 309900). Peripheral blood mononuclear cells (PBMCs) were reprogrammed by lentiviral delivery of a self-silencing hOKSM polycistronic vector. The pluripotency of the iPSC line was confirmed by the expression of pluripotency-associated markers and in vitro spontaneous differentiation towards the 3 germ layers. The iPSC line showed normal karyotype. The cell line offers a good platform to study MPS II pathophysiology, for drug testing, early biomarker discovery and gene therapy studies.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Cheng ZJ et al. (JUN 1998) Biochimica et biophysica acta 1392 2-3 291--9Antioxidant properties of butein isolated from Dalbergia odorifera.
The antioxidant properties of butein, isolated from Dalbergia odorifera T. Chen, were investigated in this study. Butein inhibited iron-induced lipid peroxidation in rat brain homogenate in a concentration-dependent manner with an IC50, 3.3+/-0.4 microM. It was as potent as alpha-tocopherol in reducing the stable free radical diphenyl-2-picrylhydrazyl (DPPH) with an IC0.200, 9.2+/-1.8 microM. It also inhibited the activity of xanthine oxidase with an IC50, 5.9+/-0.3 microM. Besides, butein scavenged the peroxyl radical derived from 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH) in aqueous phase, but not that from 2,2-azobis(2, 4-dimethylvaleronitrile) (AMVN) in hexane. Furthermore, butein inhibited copper-catalyzed oxidation of human low-density lipoprotein (LDL), as measured by conjugated dienes and thiobarbituric acid-reactive substance (TBARS) formations, and electrophoretic mobility in a concentration-dependent manner. Spectral analysis revealed that butein was a chelator of ferrous and copper ions. It is proposed that butein serves as a powerful antioxidant against lipid and LDL peroxidation by its versatile free radical scavenging actions and metal ion chelation.Catalog #: Product Name: 73462 Butein Catalog #: 73462 Product Name: Butein Wakimoto H et al. (APR 2009) Cancer research 69 8 3472--81Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors.
Glioblastoma, the most malignant type of primary brain tumor, is one of the solid cancers where cancer stem cells have been isolated, and studies have suggested resistance of those cells to chemotherapy and radiotherapy. Here, we report the establishment of CSC-enriched cultures derived from human glioblastoma specimens. They grew as neurospheres in serum-free medium with epidermal growth factor and fibroblast growth factor 2, varied in the level of CD133 expression and very efficiently formed highly invasive and/or vascular tumors upon intracerebral implantation into immunodeficient mice. As a novel therapeutic strategy for glioblastoma-derived cancer stem-like cells (GBM-SC), we have tested oncolytic herpes simplex virus (oHSV) vectors. We show that although ICP6 (UL39)-deleted mutants kill GBM-SCs as efficiently as wild-type HSV, the deletion of gamma34.5 significantly attenuated the vectors due to poor replication. However, this was significantly reversed by the additional deletion of alpha47. Infection with oHSV G47Delta (ICP6(-), gamma34.5(-), alpha47(-)) not only killed GBM-SCs but also inhibited their self-renewal as evidenced by the inability of viable cells to form secondary tumor spheres. Importantly, despite the highly invasive nature of the intracerebral tumors generated by GBM-SCs, intratumoral injection of G47Delta significantly prolonged survival. These results for the first time show the efficacy of oHSV against human GBM-SCs, and correlate this cytotoxic property with specific oHSV mutations. This is important for designing new oHSV vectors and clinical trials. Moreover, the new glioma models described in this study provide powerful tools for testing experimental therapeutics and studying invasion and angiogenesis.Catalog #: Product Name: 05707 NeuroCultâ„¢ Chemical Dissociation Kit (Mouse) Catalog #: 05707 Product Name: NeuroCultâ„¢ Chemical Dissociation Kit (Mouse) Cheung C et al. (APR 2014) Nature protocols 9 4 929--38Directed differentiation of embryonic origin-specific vascular smooth muscle subtypes from human pluripotent stem cells.
Vascular smooth muscle cells (SMCs) arise from diverse developmental origins. Regional distribution of vascular diseases may, in part, be attributed to this inherent heterogeneity in SMC lineage. Therefore, systems for generating human SMC subtypes of distinct embryonic origins would represent useful platforms for studying the influence of SMC lineage on the spatial specificity of vascular disease. Here we describe how human pluripotent stem cells can be differentiated into distinct populations of SMC subtypes under chemically defined conditions. The initial stage (days 0-5 or 0-7) begins with the induction of three intermediate lineages: neuroectoderm, lateral plate mesoderm and paraxial mesoderm. Subsequently, these precursor lineages are differentiated into contractile SMCs (days 5-19+). At key stages, the emergence of lineage-specific markers confirms recapitulation of embryonic developmental pathways and generation of functionally distinct SMC subtypes. The ability to derive an unlimited supply of human SMCs will accelerate applications in regenerative medicine and disease modeling.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Roda JM et al. (JUL 2006) Journal of immunology (Baltimore, Md. : 1950) 177 1 120--9Interleukin-21 enhances NK cell activation in response to antibody-coated targets.
NK cells express an activating FcR (FcgammaRIIIa) that mediates Ab-dependent cellular cytotoxicity and the production of immune modulatory cytokines in response to Ab-coated targets. IL-21 has antitumor activity in murine models that depends in part on its ability to promote NK cell cytotoxicity and IFN-gamma secretion. We hypothesized that the NK cell response to FcR stimulation would be enhanced by the administration of IL-21. Human NK cells cultured with IL-21 and immobilized IgG or human breast cancer cells coated with a therapeutic mAb (trastuzumab) secreted large amounts of IFN-gamma. Increased secretion of TNF-alpha and the chemokines IL-8, MIP-1alpha, and RANTES was also observed under these conditions. NK cell IFN-gamma production was dependent on distinct signals mediated by the IL-21R and the FcR and was abrogated in STAT1-deficient NK cells. Supernatants derived from NK cells that had been stimulated with IL-21 and mAb-coated breast cancer cells were able to drive the migration of naive and activated T cells in an in vitro chemotaxis assay. IL-21 also enhanced NK cell lytic activity against Ab-coated tumor cells. Coadministration of IL-21 and Ab-coated tumor cells to immunocompetent mice led to synergistic production of IFN-gamma by NK cells. Furthermore, the administration of IL-21 augmented the effects of an anti-HER2/neu mAb in a murine tumor model, an effect that required IFN-gamma. These findings demonstrate that IL-21 significantly enhances the NK cell response to Ab-coated targets and suggest that IL-21 would be an effective adjuvant to administer in combination with therapeutic mAbs.Catalog #: Product Name: 15025 RosetteSepâ„¢ Human NK Cell Enrichment Cocktail Catalog #: 15025 Product Name: RosetteSepâ„¢ Human NK Cell Enrichment Cocktail Mandal PK and Rossi DJ (MAR 2013) Nature protocols 8 3 568--82Reprogramming human fibroblasts to pluripotency using modified mRNA
Induced pluripotent stem (iPS) cells hold the potential to revolutionize regenerative medicine through their capacity to generate cells of diverse lineages for future patient-specific cell-based therapies. To facilitate the transition of iPS cells to clinical practice, a variety of technologies have been developed for transgene-free pluripotency reprogramming. We recently reported efficient iPS cell generation from human fibroblasts using synthetic modified mRNAs. Here we describe a stepwise protocol for the generation of modified mRNA-derived iPS cells from primary human fibroblasts, focusing on the critical parameters including medium choice, quality control, and optimization steps needed for synthesizing modified mRNAs encoding reprogramming factors and introducing these into cells over the course of 2-3 weeks to ensure successful reprogramming. The protocol described herein is for reprogramming of human fibroblasts to pluripotency; however, the properties of modified mRNA make it a powerful platform for protein expression, which has broad applicability in directed differentiation, cell fate specification and therapeutic applications. View PublicationCatalog #: Product Name: 05854 ³¾¹ó°ù±ð³§¸éâ„¢ 85850 ³¾°Õ±ð³§¸éâ„¢1 36254 DMEM/F-12 with 15 mM HEPES Catalog #: 05854 Product Name: ³¾¹ó°ù±ð³§¸éâ„¢ Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 36254 Product Name: DMEM/F-12 with 15 mM HEPES Qian H et al. (MAY 2006) Blood 107 9 3503--10Contribution of alpha6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with alpha4 integrins.
The laminin receptor integrin alpha6 chain is ubiquitously expressed in human and mouse hematopoietic stem and progenitor cells. We have studied its role for homing of stem and progenitor cells to mouse hematopoietic tissues in vivo. A function-blocking anti-integrin alpha6 antibody significantly reduced progenitor cell homing to bone marrow (BM) of lethally irradiated mice, with a corresponding retention of progenitors in blood. Remarkably, the anti-integrin alpha6 antibody profoundly inhibited BM homing of long-term multilineage engrafting stem cells, studied by competitive repopulation assay and analysis of donor-derived lymphocytes and myeloid cells in blood 16 weeks after transplantation. A similar profound inhibition of long-term stem cell homing was obtained by using a function-blocking antibody against alpha4 integrin, studied in parallel. Furthermore, the anti-integrin alpha6 and alpha4 antibodies synergistically inhibited homing of short-term repopulating stem cells. Intravenous injection of anti-integrin alpha6 antibodies, in contrast to antibodies against alpha4 integrin, did not mobilize progenitors or enhance cytokine-induced mobilization by G-CSF. Our results provide the first evidence for a distinct functional role of integrin alpha6 receptor during hematopoietic stem and progenitor cell homing and collaboration of alpha6 integrin with alpha4 integrin receptors during homing of short-term stem cells.Catalog #: Product Name: 03134 MethoCultâ„¢ M3134 Catalog #: 03134 Product Name: MethoCultâ„¢ M3134 A. Lopresti et al. (jun 2019) JCI insight 5Sensitive and easy screening for circulating tumor cells by flow cytometry.
Circulating Tumor Cells (CTCs) represent an easy, repeatable and representative access to information regarding solid tumors. However, their detection remains difficult because of their paucity, their short half-life, and the lack of reliable surface biomarkers. Flow cytometry (FC) is a fast, sensitive and affordable technique, ideal for rare cells detection. Adapted to CTCs detection (i.e. extremely rare cells), most FC-based techniques require a time-consuming pre-enrichment step, followed by a 2-hours staining procedure, impeding on the efficiency of CTCs detection. We overcame these caveats and reduced the procedure to less than one hour, with minimal manipulation. First, cells were simultaneously fixed, permeabilized, then stained. Second, using low-speed FC acquisition conditions and two discriminators (cell size and pan-cytokeratin expression), we suppressed the pre-enrichment step. Applied to blood from donors with or without known malignant diseases, this protocol ensures a high recovery of the cells of interest independently of their epithelial-mesenchymal plasticity and can predict which samples are derived from cancer donors. This proof-of-concept study lays the bases of a sensitive tool to detect CTCs from a small amount of blood upstream of in-depth analyses.Catalog #: Product Name: 15122 RosetteSepâ„¢ Human CD45 Depletion Cocktail Catalog #: 15122 Product Name: RosetteSepâ„¢ Human CD45 Depletion Cocktail N. Vannini et al. (mar 2019) Cell stem cell 24 3 405--418.e7The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance.
It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD+-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80{\%}, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation. In immune-deficient mice, NR increased the production of human leucocytes from hCD34+ progenitors. Our work demonstrates for the first time a positive effect of NAD+-boosting strategies on the most primitive blood stem cells, establishing a link between HSC mitochondrial stress, mitophagy, and stem-cell fate decision, and unveiling the potential of NR to improve recovery of patients suffering from hematological failure including post chemo- and radiotherapy.Catalog #: Product Name: 03434 MethoCultâ„¢ GF M3434 09600 StemSpanâ„¢ SFEM 09605 StemSpanâ„¢ SFEM II 04034 MethoCultâ„¢ H4034 Optimum 22000 ³§°Õ·¡²Ñ±¹¾±²õ¾±´Ç²Ôâ„¢ 02698 Human LDL Catalog #: 03434 Product Name: MethoCultâ„¢ GF M3434 Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM Catalog #: 09605 Product Name: StemSpanâ„¢ SFEM II Catalog #: 04034 Product Name: MethoCultâ„¢ H4034 Optimum Catalog #: 22000 Product Name: ³§°Õ·¡²Ñ±¹¾±²õ¾±´Ç²Ôâ„¢ Catalog #: 02698 Product Name: Human LDL Kempf H et al. (SEP 2015) Nature protocols 10 9 1345--1361Cardiac differentiation of human pluripotent stem cells in scalable suspension culture.
Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are a potential cell source for regenerative therapies, drug discovery and disease modeling. All these applications require a routine supply of relatively large quantities of in vitro-generated CMs. This protocol describes a suspension culture-based strategy for the generation of hPSC-CMs as cell-only aggregates, which facilitates process development and scale-up. Aggregates are formed for 4 d in hPSC culture medium followed by 10 d of directed differentiation by applying chemical Wnt pathway modulators. The protocol is applicable to static multiwell formats supporting fast adaptation to specific hPSC line requirements. We also demonstrate how to apply the protocol using stirred tank bioreactors at a 100-ml scale, providing a well-controlled upscaling platform for CM production. In bioreactors, the generation of 40-50 million CMs per differentiation batch at textgreater80% purity without further lineage enrichment can been achieved within 24 d.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Items 13 to 24 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.