References
Items 181 to 192 of 6390 total
- Stewart A et al. (JUN 2010) Journal of cellular physiology 223 3 658--66
BMP-3 promotes mesenchymal stem cell proliferation through the TGF-beta/activin signaling pathway.
Adipogenesis plays a key role in the pathogenesis of obesity. It begins with the commitment of mesenchymal stem cells (MSCs) to the adipocyte lineage, followed by terminal differentiation of preadipocytes to mature adipocytes. A critical, but poorly understood, component of adipogenesis involves proliferation of MSCs and preadipocytes. The present study was undertaken to examine the hypothesis that bone morphogenetic protein-3 (BMP-3) promotes adipogenesis using C3H10T1/2 MSCs and 3T3-L1 preadipocytes as in vitro model systems. We demonstrated that although it did not promote the commitment of MSCs to the adipocyte lineage or the differentiation of preadipocytes to adipocytes, BMP-3-stimulated proliferation by threefold in both cell types. Owing to a lack of information on MSC proliferation, we then delineated the molecular mechanisms underlying BMP-3-stimulated MSC proliferation. We showed that BMP-3 activated the transforming growth factor-beta (TGF-beta)/activin but not ERK1/2, p38 MAPK, or JNK signaling pathways in C3H10T1/2 cells. Furthermore, the TGF-beta/activin receptor kinase inhibitor SB-431542 blocked BMP-3-stimulated proliferation. Importantly, siRNA-mediated knockdown of the key TGF-beta/activin signaling pathway components, ActRIIB, ALK4, or Smad2, abrogated the mitogenic effects of BMP-3 on MSCs. Together, these results demonstrate that BMP-3 stimulates MSC proliferation via the TGF-beta/activin signaling pathway, thus revealing a novel role for this divergent and poorly understood member of the TGF-beta superfamily in regulating MSC proliferation.Catalog #: Product Name: 72632 SB202190 Catalog #: 72632 Product Name: SB202190 Anderson AE et al. (FEB 2009) Journal of leukocyte biology 85 2 243--50LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells.
Autoimmune pathologies are caused by a breakdown in self-tolerance. Tolerogenic dendritic cells (tolDC) are a promising immunotherapeutic tool for restoring self-tolerance in an antigen-specific manner. Studies about tolDC have focused largely on generating stable maturation-resistant DC, but few have fully addressed questions about the antigen-presenting and migratory capacities of these cells, prerequisites for successful immunotherapy. Here, we investigated whether human tolDC, generated with dexamethasone and the active form of vitamin D3, maintained their tolerogenic function upon activation with LPS (LPS-tolDC), while acquiring the ability to present exogenous autoantigen and to migrate in response to the CCR7 ligand CCL19. LPS activation led to important changes in the tolDC phenotype and function. LPS-tolDC, but not tolDC, expressed the chemokine receptor CCR7 and migrated in response to CCL19. Furthermore, LPS-tolDC were superior to tolDC in their ability to present type II collagen, a candidate autoantigen in rheumatoid arthritis. tolDC and LPS-tolDC had low stimulatory capacity for allogeneic, naïve T cells and skewed T cell polarization toward an anti-inflammatory phenotype, although LPS-tolDC induced significantly higher levels of IL-10 production by T cells. Our finding that LPS activation is essential for inducing migratory and antigen-presenting activity in tolDC is important for optimizing their therapeutic potential.Kruh J (FEB 1982) Molecular and cellular biochemistry 42 2 65--82Effects of sodium butyrate, a new pharmacological agent, on cells in culture.
Sodium butyrate, at millimolar concentrations, when added to cell cultures produces many morphological and biochemical modifications in a reversible manner. Some of them occur in all cell lines. They concern regulatory mechanisms of gene expression and cell growth: an hyperacetylation of histone resulting from an inhibition of histone deacetylase and an arrest of cell proliferation are almost constantly observed. Some other modifications vary from one cell type to another: induction of proteins, including enzymes, hormones, hemoglobin, inhibition of cell differentiation, reversion of transformed characteristics of cells to normal morphological and biochemical pattern, increase in interferon antiviral efficiency and induction of integrated viruses. Most if not all these effects of butyrate could result from histone hyperacetylation, from changes in chromatin structures as measured by accessibility to DNases and from modifications in cytoskeleton assembly. We do not know at the present time whether butyrate acts on a very specific target site in cell or if it acts on several cell components.Catalog #: Product Name: 72242 Sodium Butyrate Catalog #: 72242 Product Name: Sodium Butyrate Xia G et al. (OCT 2013) Journal of Molecular Neuroscience 51 2 237--248Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro
Spinocerebellar ataxia type 2 (SCA2) is caused by triple nucleotidebackslashnrepeat (CAG) expansion in the coding region of the ATAXN2 gene onbackslashnchromosome 12, which produces an elongated, toxic polyglutamine tract,backslashnleading to Purkinje cell loss. There is currently no effective therapy.backslashnOne of the main obstacles that hampers therapeutic development is lackbackslashnof an ideal disease model. In this study, we have generated andbackslashncharacterized SCA2-induced pluripotent stem (iPS) cell lines as an inbackslashnvitro cell model. Dermal fibroblasts (FBs) were harvested from primarybackslashncultures of skin explants obtained from a SCA2 subject and a healthybackslashnsubject. For reprogramming, hOct4, hSox2, hKlf4, and hc-Myc werebackslashntransduced to passage-3 FBs by retroviral infection. Both SCA2 iPS andbackslashncontrol iPS cells were successfully generated and showed typical stembackslashncell growth patterns with normal karyotype. All iPS cell lines expressedbackslashnstem cell markers and differentiated in vitro into cells from threebackslashnembryonic germ layers. Upon in vitro neural differentiation, SCA2 iPSbackslashncells showed abnormality in neural rosette formation but successfullybackslashndifferentiated into neural stem cells (NSCs) and subsequent neuralbackslashncells. SCA2 and normal FBs showed a comparable level of ataxin-2backslashnexpression; whereas SCA2 NSCs showed less ataxin-2 expression thanbackslashnnormal NSCs and SCA2 FBs. Within the neural lineage, neurons had thebackslashnmost abundant expression of ataxin-2. Time-lapsed neural growth assaybackslashnindicated terminally differentiated SCA2 neural cells were short-livedbackslashncompared with control neural cells. The expanded CAG repeats of SCA2backslashnwere stable throughout reprogramming and neural differentiation. Inbackslashnconclusion, we have established the first disease-specific human SCA2backslashniPS cell line. These mutant iPS cells have the potential for neuralbackslashndifferentiation. These differentiated neural cells harboring mutationsbackslashnare invaluable for the study of SCA2 pathogenesis and therapeutic drugbackslashndevelopment.Catalog #: Product Name: 05854 ³¾¹ó°ù±ð³§¸éâ„¢ Catalog #: 05854 Product Name: ³¾¹ó°ù±ð³§¸éâ„¢ Miyagawa S et al. (SEP 2004) Journal of immunology (Baltimore, Md. : 1950) 173 6 3945--52Delta-short consensus repeat 4-decay accelerating factor (DAF: CD55) inhibits complement-mediated cytolysis but not NK cell-mediated cytolysis.
NK cells play a critical role in the rejection of xenografts. In this study, we report on an investigation of the effect of complement regulatory protein, a decay accelerating factor (DAF: CD55), in particular, on NK cell-mediated cytolysis. Amelioration of human NK cell-mediated pig endothelial cell (PEC) and pig fibroblast cell lyses by various deletion mutants and point substitutions of DAF was tested, and compared with their complement regulatory function. Although wild-type DAF and the delta-short consensus repeat (SCR) 1-DAF showed clear inhibition of both complement-mediated and NK-mediated PEC lyses, delta-SCR2-DAF and delta-SCR3-DAF failed to suppress either process. However, delta-SCR4-DAF showed a clear complement regulatory effect, but had no effect on NK cells. Conversely, the point substitution of DAF (L147 x F148 to SS and KKK(125-127) to TTT) was half down-regulated in complement inhibitory function, but the inhibition of NK-mediated PEC lysis remained unchanged. Other complement regulatory proteins, such as the cell membrane-bound form factor H, fH-PI, and C1-inactivator, C1-INH-PI, and CD59 were also assessed, but no suppressive effect on NK cell-mediated PEC lysis was found. These data suggest, for DAF to function on NK cells, SCR2-4 is required but no relation to its complement regulatory function exists.Catalog #: Product Name: 15025 RosetteSepâ„¢ Human NK Cell Enrichment Cocktail Catalog #: 15025 Product Name: RosetteSepâ„¢ Human NK Cell Enrichment Cocktail Gupta S et al. (DEC 2017) Journal of NeurochemistryFibroblast growth factor 2 regulates activity and gene expression of human post-mitotic excitatory neurons
Many neuropsychiatric disorders are thought to result from subtle changes in neural circuit formation. We used human embryonic stem cells and induced pluripotent stem cells (hiPSCs) to model mature, post-mitotic excitatory neurons and examine effects of fibroblast growth factor 2 (FGF2). FGF2 gene expression is known to be altered in brain regions of major depressive disorder (MDD) patients and FGF2 has anti-depressive effects in animal models of depression. We generated stable inducible neurons (siNeurons) conditionally expressing human neurogenin-2 (NEUROG2) to generate a homogenous population of post-mitotic excitatory neurons and study the functional as well as the transcriptional effects of FGF2. Upon induction of NEUROG2 with doxycycline, the vast majority of cells are post-mitotic, and the gene expression profile recapitulates that of excitatory neurons within 6 days. Using hES cell lines that inducibly express NEUROG2 as well as GCaMP6f, we were able to characterize spontaneous calcium activity in these neurons and show that calcium transients increase in the presence of FGF2. The FGF2-responsive genes were determined by RNA-Seq. FGF2-regulated genes previously identified in non-neuronal cell types were up-regulated (EGR1, ETV4, SPRY4, and DUSP6) as a result of chronic FGF2 treatment of siNeurons. Novel neuron-specific genes were also identified that may mediate FGF2-dependent increases in synaptic efficacy including NRXN3, SYT2, and GALR1. Since several of these genes have been implicated in MDD previously, these results will provide the basis for more mechanistic studies of the role of FGF2 in MDD.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 05835 STEMdiffâ„¢ Neural Induction Medium 05790 BrainPhysâ„¢ Neuronal Medium 05792 BrainPhysâ„¢ Neuronal Medium and SM1 Kit 05794 BrainPhysâ„¢ Primary Neuron Kit 05795 BrainPhysâ„¢ hPSC Neuron Kit 05793 BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05835 Product Name: STEMdiffâ„¢ Neural Induction Medium Catalog #: 05790 Product Name: BrainPhysâ„¢ Neuronal Medium Catalog #: 05792 Product Name: BrainPhysâ„¢ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhysâ„¢ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhysâ„¢ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit Pé et al. (OCT 2010) Journal of medical genetics 47 10 686--91Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia.
BACKGROUND: CBL missense mutations have recently been associated with juvenile myelomonocytic leukaemia (JMML), an aggressive myeloproliferative and myelodysplastic neoplasm of early childhood characterised by excessive macrophage/monocyte proliferation. CBL, an E3 ubiquitin ligase and a multi-adaptor protein, controls proliferative signalling networks by downregulating the growth factor receptor signalling cascades in various cell types. METHODS AND RESULTS: CBL mutations were screened in 65 patients with JMML. A homozygous mutation of CBL was found in leukaemic cells of 4/65 (6%) patients. In all cases, copy neutral loss of heterozygosity of the 11q23 chromosomal region, encompassing the CBL locus, was demonstrated. Three of these four patients displayed additional features suggestive of an underlying developmental condition. A heterozygous germline CBL p.Y371H substitution was found in each of them and was inherited from the father in one patient. The germline mutation represents the first hit, with somatic loss of heterozygosity being the second hit positively selected in JMML cells. The three patients display a variable combination of dysmorphic features, hyperpigmented skin lesions and microcephaly that enable a 'CBL syndrome' to be tentatively delineated. Learning difficulties and postnatal growth retardation may be part of the phenotype. CONCLUSION: A report of germline mutations of CBL in three patients with JMML is presented here, confirming the existence of an unreported inheritable condition associated with a predisposition to JMML.Catalog #: Product Name: 04531 MethoCultâ„¢ H4531 Catalog #: 04531 Product Name: MethoCultâ„¢ H4531 Lopez-Izquierdo A et al. (NOV 2014) American journal of physiology. Heart and circulatory physiology 307 9 H1370--7A near-infrared fluorescent voltage-sensitive dye allows for moderate-throughput electrophysiological analyses of human induced pluripotent stem cell-derived cardiomyocytes.
Human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM)-based assays are emerging as a promising tool for the in vitro preclinical screening of QT interval-prolonging side effects of drugs in development. A major impediment to the widespread use of human iPSC-CM assays is the low throughput of the currently available electrophysiological tools. To test the precision and applicability of the near-infrared fluorescent voltage-sensitive dye 1-(4-sulfanatobutyl)-4-β[2-(di-n-butylamino)-6-naphthyl]butadienylquinolinium betaine (di-4-ANBDQBS) for moderate-throughput electrophysiological analyses, we compared simultaneous transmembrane voltage and optical action potential (AP) recordings in human iPSC-CM loaded with di-4-ANBDQBS. Optical AP recordings tracked transmembrane voltage with high precision, generating nearly identical values for AP duration (AP durations at 10%, 50%, and 90% repolarization). Human iPSC-CMs tolerated repeated laser exposure, with stable optical AP parameters recorded over a 30-min study period. Optical AP recordings appropriately tracked changes in repolarization induced by pharmacological manipulation. Finally, di-4-ANBDQBS allowed for moderate-throughput analyses, increasing throughput textgreater10-fold over the traditional patch-clamp technique. We conclude that the voltage-sensitive dye di-4-ANBDQBS allows for high-precision optical AP measurements that markedly increase the throughput for electrophysiological characterization of human iPSC-CMs.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 R. E. Rayner et al. ( 2019) Scientific reports 9 1 500Optimization of Normal Human Bronchial Epithelial (NHBE) Cell 3D Cultures for in vitro Lung Model Studies.
Robust in vitro lung models are required for risk assessment to measure key events leading to respiratory diseases. Primary normal human bronchial epithelial cells (NHBE) represent a good lung model but obtaining well-differentiated 3D cultures can be challenging. Here, we evaluated the ability to expand primary NHBE cells in different culture conditions while maintaining their 3D culture characteristics such as ciliated and goblet cells, and ion channel function. Differentiated cultures were optimally obtained with PneumaCult-Ex Plus (expansion medium)/PneumaCult-ALI (differentiation medium). Primary cells passaged up to four times maintained airway epithelial characteristics as evidenced by ciliated pseudostratified columnar epithelium with goblet cells, trans-epithelial electrical resistance (TEER) ({\textgreater}400 Ohms.cm2), and cystic fibrosis transmembrane conductance regulator-mediated short-circuit currents ({\textgreater}3 µA/cm2). No change in ciliary beat frequency (CBF) or airway surface liquid (ASL) meniscus length was observed up to passage six. For the first time, this study demonstrates that CFTR ion channel function and normal epithelial phenotypic characteristics are maintained in passaged primary NHBE cells. Furthermore, this study highlights the criticality of evaluating expansion and differentiation conditions for achieving optimal phenotypic and functional endpoints (CBF, ASL, ion channel function, presence of differentiated cells, TEER) when developing in vitro lung models.Catalog #: Product Name: 05001 PneumaCult™-ALI Medium 05040 PneumaCult™-Ex Plus Medium Catalog #: 05001 Product Name: PneumaCult™-ALI Medium Catalog #: 05040 Product Name: PneumaCult™-Ex Plus Medium Wang X et al. (DEC 2010) Blood 116 26 5972--82Sequential treatment of CD34+ cells from patients with primary myelofibrosis with chromatin-modifying agents eliminate JAK2V617F-positive NOD/SCID marrow repopulating cells.
Because primary myelofibrosis (PMF) originates at the level of the pluripotent hematopoietic stem cell (HSC), we examined the effects of various therapeutic agents on the in vitro and in vivo behavior of PMF CD34(+) cells. Treatment of PMF CD34(+) cells with chromatin-modifying agents (CMAs) but not hydroxyurea, Janus kinase 2 (JAK2) inhibitors, or low doses of interferon-α led to the generation of greater numbers of CD34(+) chemokine (C-X-C motif) receptor (CXCR)4(+) cells, which were capable of migrating in response to chemokine (C-X-C motif) ligand (CXCL)12 and resulted in a reduction in the proportion of hematopoietic progenitor cells (HPCs) that were JAK2V617F(+). Furthermore, sequential treatment of PMF CD34(+) cells but not normal CD34(+) cells with decitabine (5-aza-2'-deoxycytidine [5azaD]), followed by suberoylanilide hydroxamic acid (SAHA; 5azaD/SAHA), or trichostatin A (5azaD/TSA) resulted in a higher degree of apoptosis. Two to 6 months after the transplantation of CMAs treated JAK2V617F(+) PMF CD34(+) cells into nonobese diabetic/severe combined immunodeficient (SCID)/IL-2Rγ(null) mice, the percentage of JAK2V617F/JAK2(total) in human CD45(+) marrow cells was dramatically reduced. These findings suggest that both PMF HPCs, short-term and long-term SCID repopulating cells (SRCs), are JAK2V617F(+) and that JAK2V617F(+) HPCs and SRCs can be eliminated by sequential treatment with CMAs. Sequential treatment with CMAs, therefore, represents a possible effective means of treating PMF at the level of the malignant SRC.Catalog #: Product Name: 04230 MethoCultâ„¢ H4230 Catalog #: 04230 Product Name: MethoCultâ„¢ H4230 Nishimura K et al. (FEB 2011) The Journal of biological chemistry 286 6 4760--71Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming.
The ectopic expression of transcription factors can reprogram differentiated tissue cells into induced pluripotent stem cells. However, this is a slow and inefficient process, depending on the simultaneous delivery of multiple genes encoding essential reprogramming factors and on their sustained expression in target cells. Moreover, once cell reprogramming is accomplished, these exogenous reprogramming factors should be replaced with their endogenous counterparts for establishing autoregulated pluripotency. Complete and designed removal of the exogenous genes from the reprogrammed cells would be an ideal option for satisfying this latter requisite as well as for minimizing the risk of malignant cell transformation. However, no single gene delivery/expression system has ever been equipped with these contradictory characteristics. Here we report the development of a novel replication-defective and persistent Sendai virus (SeVdp) vector based on a noncytopathic variant virus, which fulfills all of these requirements for cell reprogramming. The SeVdp vector could accommodate up to four exogenous genes, deliver them efficiently into various mammalian cells (including primary tissue cells and human hematopoietic stem cells) and express them stably in the cytoplasm at a prefixed balance. Furthermore, interfering with viral transcription/replication using siRNA could erase the genomic RNA of SeVdp vector from the target cells quickly and thoroughly. A SeVdp vector installed with Oct4/Sox2/Klf4/c-Myc could reprogram mouse primary fibroblasts quite efficiently; ∼1% of the cells were reprogrammed to Nanog-positive induced pluripotent stem cells without chromosomal gene integration. Thus, this SeVdp vector has potential as a tool for advanced cell reprogramming and for stem cell research.Tomasz M ( 1995) Chemistry & biology 2 9 575--579Mitomycin C: small, fast and deadly (but very selective).
Mitomycin C, an important antitumor drug and antibiotic, has an extraordinary ability to crosslink DNA with high efficiency and absolute specificity for the sequence CpG. Recent results have shown how mitomycin C crosslinks DNA, and why the sequence specificity is so complete. This new understanding may allow the design of agents that mimic mitomycin C's economy of structure and can crosslink other sequences.Catalog #: Product Name: 73272 Mitomycin C Catalog #: 73272 Product Name: Mitomycin C Items 181 to 192 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.