Product Information
Items 649 to 660 of 13914 total
- Safety Data Sheet
Catalog #: Product Name: 100-1465 Anti-Human IL-2 Antibody, Clone MT8G10, Biotin Catalog #: 100-1465 Product Name: Anti-Human IL-2 Antibody, Clone MT8G10, Biotin - ReferenceL. J. Wagstaff et al. (Oct 2024) Nature Communications 15
CRISPR-edited human ES-derived oligodendrocyte progenitor cells improve remyelination in rodents
In Multiple Sclerosis (MS), inflammatory demyelinated lesions in the brain and spinal cord lead to neurodegeneration and progressive disability. Remyelination can restore fast saltatory conduction and neuroprotection but is inefficient in MS especially with increasing age, and is not yet treatable with therapies. Intrinsic and extrinsic inhibition of oligodendrocyte progenitor cell (OPC) function contributes to remyelination failure, and we hypothesised that the transplantation of ‘improved’ OPCs, genetically edited to overcome these obstacles, could improve remyelination. Here, we edit human(h) embryonic stem cell-derived OPCs to be unresponsive to a chemorepellent released from chronic MS lesions, and transplant them into rodent models of chronic lesions. Edited hOPCs display enhanced migration and remyelination compared to controls, regardless of the host age and length of time post-transplant. We show that genetic manipulation and transplantation of hOPCs overcomes the negative environment inhibiting remyelination, with translational implications for therapeutic strategies for people with progressive MS. Subject terms: Multiple sclerosis, Multiple sclerosis, RegenerationCatalog #: Product Name: 34411 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 Catalog #: 34411 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 ReferenceY. Ishibashi et al. (Oct 2024) Addiction Biology 29 10Development of an evaluation method for addictive compounds based on electrical activity of human iPS cellâ€derived dopaminergic neurons using microelectrode array
Addiction is known to occur through the consumption of substances such as pharmaceuticals, illicit drugs, food, alcohol and tobacco. These addictions can be viewed as drug addiction, resulting from the ingestion of chemical substances contained in them. Multiple neural networks, including the reward system, antiâ€reward/stress system and central immune system in the brain, are believed to be involved in the onset of drug addiction. Although various compound evaluations using microelectrode array (MEA) as an in vitro testing methods to evaluate neural activities have been conducted, methods for assessing addiction have not been established. In this study, we aimed to develop an in vitro method for assessing the addiction of compounds, as an alternative to animal experiments, using human iPS cellâ€derived dopaminergic neurons with MEA measurements. MEA data before and after chronic exposure revealed specific changes in addictive compounds compared to nonâ€addictive compounds, demonstrating the ability to estimate addiction of compound. Additionally, conducting gene expression analysis on cultured samples after the tests revealed changes in the expression levels of various receptors (nicotine, dopamine and GABA) due to chronic administration of addictive compounds, suggesting the potential interpretation of these expression changes as addictionâ€like responses in MEA measurements. The addiction assessment method using MEA measurements in human iPS cellâ€derived dopaminergic neurons conducted in this study proves effective in evaluating addiction of compounds on human neural networks.Catalog #: Product Name: 05711 NeuroCultâ„¢ SM1 Neuronal Supplement 05790 BrainPhysâ„¢ Neuronal Medium Catalog #: 05711 Product Name: NeuroCultâ„¢ SM1 Neuronal Supplement Catalog #: 05790 Product Name: BrainPhysâ„¢ Neuronal Medium Safety Data SheetCatalog #: Product Name: 100-1464 Anti-Human IL-2 Antibody, Clone MT8G10, FITC Catalog #: 100-1464 Product Name: Anti-Human IL-2 Antibody, Clone MT8G10, FITC ReferenceC. R. Luthers et al. (Sep 2024) Molecular Therapy. Methods & Clinical Development 32 4DNA contamination within recombinant adeno-associated virus preparations correlates with decreased CD34 + cell clonogenic potential
Recombinant adeno-associated viruses (rAAV) are promising for applications in many genome editing techniques through their effectiveness as carriers of DNA homologous donors into primary hematopoietic stem and progenitor cells (HSPCs), but they have many outstanding concerns. Specifically, their biomanufacturing and the variety of factors that influence the quality and consistency of rAAV preps are in question. During the process of rAAV packaging, a cell line is transfected with several DNA plasmids that collectively encode all the necessary information to allow for viral packaging. Ideally, this process results in the packaging of complete viral particles only containing rAAV genomes; however, this is not the case. Through this study, we were able to leverage single-stranded virus (SSV) sequencing, a next-generation sequencing-based method to quantify all DNA species present within rAAV preps. From this, it was determined that much of the DNA within some rAAV preps is not vector-genome derived, and there is wide variability in the contamination by DNA across various preps. Furthermore, we demonstrate that transducing CD34 + HSPCs with preps with higher contaminating DNA resulted in decreased clonogenic potential, altered transcriptomic profiles, and decreased genomic editing. Collectively, this study characterized the effects of DNA contamination within rAAV preps on CD34 + HSPC cellular potential.Catalog #: Product Name: 04435 MethoCultâ„¢ H4435 Enriched Catalog #: 04435 Product Name: MethoCultâ„¢ H4435 Enriched ReferenceF. Tang et al. (Oct 2024) Stem Cell Research & Therapy 15Genetically engineered human induced pluripotent stem cells for the production of brain-targeting extracellular vesicles
Extracellular vesicles (EVs) are cell-secreted membrane vesicles that have become a promising, natural nanoparticle system for delivering either naturally carried or exogenously loaded therapeutic molecules. Among reported cell sources for EV manufacture, human induced pluripotent stem cells (hiPSCs) offer numerous advantages. However, hiPSC-EVs only have a moderate ability for brain delivery. Herein, we sought to develop a stable hiPSC line for producing EVs with substantially enhanced brain targeting by genetic engineering to overexpress rabies viral glycoprotein (RVG) peptide fused to the N terminus of lysosomal associated membrane protein 2B (RVG-Lamp2B) which has been shown capable of boosting the brain delivery of EVs via the nicotinic acetylcholine receptor. An RVG-Lamp2B-HA expression cassette was knocked into the AAVS1 safe harbor locus of a control hiPSC line using the CRISPR/Cas9-assisted homologous recombination. Western blot was used to detect the expression of RVG-Lamp2B-HA in RVG-edited hiPSCs as well as EVs derived from RVG-edited hiPSCs. Uptake of EVs by SH-SY5Y cells in the presence of various endocytic inhibitors was analyzed using flow cytometry. Biodistribution and brain delivery of intravenously injected control and RVG-modified EVs in wild-type mice were examined using ex vivo fluorescent imaging. Here we report that an RVG-Lamp2B-HA expression cassette was knocked into the AAVS1 safe harbor locus of a control hiPSC line using the CRISPR/Cas9-assisted homologous recombination. The RVG-edited iPSCs have normal karyotype, express pluripotency markers, and have differentiation potential. Expression of RVG-Lamp2B-HA was detected in total cell extracts as well as EVs derived from RVG-edited (vs. control) hiPSCs. The RVG-modified EVs enter neuronal cells via distinct endocytic pathways, compared with control EVs. The biodistribution study confirmed that EVs derived from RVG-edited hiPSCs possess higher brain delivery efficiency. Taken together, we have established stable, genetically engineered hiPSCs for producing EVs with RVG expression, offering the improved ability for brain-targeted drug delivery. The online version contains supplementary material available at 10.1186/s13287-024-03955-2.Catalog #: Product Name: 05230 STEMdiffâ„¢ Trilineage Differentiation Kit Catalog #: 05230 Product Name: STEMdiffâ„¢ Trilineage Differentiation Kit Safety Data SheetCatalog #: Product Name: 100-1463 Anti-Human TNF-alpha Antibody, Clone MT15B15, Biotin Catalog #: 100-1463 Product Name: Anti-Human TNF-alpha Antibody, Clone MT15B15, Biotin ReferenceC. S. Chung et al. (Oct 2024) Nature Communications 15Transcript errors generate amyloid-like proteins in human cells
Aging is characterized by the accumulation of proteins that display amyloid-like behavior. However, the molecular mechanisms by which these proteins arise remain unclear. Here, we demonstrate that amyloid-like proteins are produced in a variety of human cell types, including stem cells, brain organoids and fully differentiated neurons by mistakes that occur in messenger RNA molecules. Some of these mistakes generate mutant proteins already known to cause disease, while others generate proteins that have not been observed before. Moreover, we show that these mistakes increase when cells are exposed to DNA damage, a major hallmark of human aging. When taken together, these experiments suggest a mechanistic link between the normal aging process and age-related diseases. Subject terms: Protein aggregation, Mechanisms of disease, TranscriptionCatalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ ReferenceN. E. H. Dinesh et al. (Oct 2024) Cellular and Molecular Life Sciences: CMLS 81 1Mutations in fibronectin dysregulate chondrogenesis in skeletal dysplasia
Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFβ1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFβ1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis. The online version contains supplementary material available at 10.1007/s00018-024-05444-4.Catalog #: Product Name: 05455 MesenCult™-ACF Chondrogenic Differentiation Kit 05240 STEMdiff™ Mesenchymal Progenitor Kit Catalog #: 05455 Product Name: MesenCult™-ACF Chondrogenic Differentiation Kit Catalog #: 05240 Product Name: STEMdiff™ Mesenchymal Progenitor Kit Safety Data SheetCatalog #: Product Name: 100-1462 Anti-Human TNF-alpha Antibody, Clone MT15B15, PF488P Catalog #: 100-1462 Product Name: Anti-Human TNF-alpha Antibody, Clone MT15B15, PF488P ReferenceK. D. Milicevic et al. (Oct 2024) Scientific Reports 14 12Plateau depolarizations in spontaneously active neurons detected by calcium or voltage imaging
In calcium imaging studies, Ca 2+ transients are commonly interpreted as neuronal action potentials (APs). However, our findings demonstrate that robust optical Ca 2+ transients primarily stem from complex “AP-Plateausâ€, while simple APs lacking underlying depolarization envelopes produce much weaker photonic signatures. Under challenging in vivo conditions, these “AP-Plateaus†are likely to surpass noise levels, thus dominating the Ca 2+ recordings. In spontaneously active neuronal culture, optical Ca 2+ transients (OGB1-AM, GCaMP6f) exhibited approximately tenfold greater amplitude and twofold longer half-width compared to optical voltage transients (ArcLightD). The amplitude of the ArcLightD signal exhibited a strong correlation with the duration of the underlying membrane depolarization, and a weaker correlation with the presence of a fast sodium AP. Specifically, ArcLightD exhibited robust responsiveness to the slow “foot†but not the fast “trunk†of the neuronal AP. Particularly potent stimulators of optical signals in both Ca 2+ and voltage imaging modalities were APs combined with plateau potentials (AP-Plateaus), resembling dendritic Ca 2+ spikes or “UP states†in pyramidal neurons. Interestingly, even the spikeless plateaus (amplitude > 10 mV, duration > 200 ms) could generate conspicuous Ca 2+ optical signals in neurons. Therefore, in certain circumstances, Ca 2+ transients should not be interpreted solely as indicators of neuronal AP firing. Subject terms: Biological techniques, Biophysics, Neuroscience, PhysiologyCatalog #: Product Name: 05790 BrainPhysâ„¢ Neuronal Medium Catalog #: 05790 Product Name: BrainPhysâ„¢ Neuronal Medium ReferenceW. Lv et al. (Sep 2024) Frontiers in Microbiology 15Cytomegalovirus results in poor graft function via bone marrow-derived endothelial progenitor cells
Poor graft function (PGF), characterized by myelosuppression, represents a significant challenge following allogeneic hematopoietic stem cell transplantation (allo-HSCT) with human cytomegalovirus (HCMV) being established as a risk factor for PGF. However, the underlying mechanism remains unclear. Bone marrow endothelial progenitor cells (BM-EPCs) play an important role in supporting hematopoiesis and their dysfunction contributes to PGF development. We aim to explore the effects of CMV on BM-EPCs and its underlying mechanism. We investigated the compromised functionality of EPCs derived from individuals diagnosed with HCMV viremia accompanied by PGF, as well as after infected by HCMV AD 169 strain in vitro , characterized by decreased cell proliferation, tube formation, migration and hematopoietic support, and increased apoptosis and secretion of TGF-β1. We demonstrated that HCMV-induced TGF-β1 secretion by BM-EPCs played a dominant role in hematopoiesis suppression in vitro experiment. Moreover, HCMV down-regulates Vitamin D receptor (VDR) and subsequently activates p38 MAPK pathway to promote TGF-β1 secretion by BM-EPCs. HCMV could infect BM-EPCs and lead to their dysfunction. The secretion of TGF-β1 by BM-EPCs is enhanced by CMV through the activation of p38 MAPK via a VDR-dependent mechanism, ultimately leading to compromised support for hematopoietic progenitors by BM EPCs, which May significantly contribute to the pathogenesis of PGF following allo-HSCT and provide innovative therapeutic strategies targeting PGF.Catalog #: Product Name: 04434 MethoCult™ H4434 Classic 09600 StemSpan™ SFEM Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 09600 Product Name: StemSpan™ SFEM Items 649 to 660 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.