Product Information
Items 625 to 636 of 14010 total
- ReferenceY. Ding et al. (Mar 2025) Journal of Hematology & Oncology 18
Disruption of the sorcin‒PAX5 protein‒protein interaction induces ferroptosis by promoting the FBXL12-mediated ubiquitination of ALDH1A1 in pancreatic cancer
Pancreatic cancer is one of the most malignant cancers, and limited therapeutic options are available. The induction of ferroptosis is considered to be a novel, promising strategy that has potential in cancer treatment, and ferroptosis inducers may be new options for eradicating malignant cancers that are resistant to traditional drugs. The exact mechanism underlying the function of sorcin in the initiation and progression of pancreatic cancer remains unclear. The expression of sorcin in cancer tissues was assessed by analyzing TCGA, GEO and immunohistochemical staining data, and the function of sorcin in the induction of ferroptosis in pancreatic cancer cells was investigated. The mechanism underlying the function of sorcin was revealed through proteomics, co-IP, Ch-IP, and luciferase assays. Natural product screening was subsequently performed to screen for products that interact with sorcin to identify new ferroptosis inducers. We first showed that sorcin expression was positively correlated with the survival and tumor stages of patients with pancreatic cancer, and we revealed that sorcin inhibited ferroptosis through its noncalcium binding function. Furthermore, we discovered that sorcin interacted with PAX5 in the cytoplasm and inhibited PAX5 nuclear translocation, which in turn decreased FBXL12 protein expression and then reduced ALDH1A1 ubiquitination, thus inhibiting ferroptosis. Moreover, an in-house natural product screen revealed that celastrol inhibited the interaction of sorcin and PAX5 by directly binding to the Cys194 residue of the sorcin protein; disruption of the sorcin-PAX5 interaction promoted the nuclear translocation of PAX5, induced the expression of FBXL12, increased the ubiquitylation of ALDH1A1, and eventually induced ferroptosis in pancreatic cancer cells. In this study, we revealed the mechanism of action of sorcin, which is a druggable target for inducing ferroptosis, we identified celastrol as a novel agent that induces ferroptosis, and we showed that disrupting the sorcin-PAX5 interaction is a promising therapeutic strategy for treating pancreatic cancer. The online version contains supplementary material available at 10.1186/s13045-025-01680-8.Catalog #: Product Name: 01700 ALDEFLUORâ„¢ Kit Catalog #: 01700 Product Name: ALDEFLUORâ„¢ Kit Safety Data SheetCatalog #: Product Name: 100-1451 Intracellular Permeabilization Buffer (10X) Catalog #: 100-1451 Product Name: Intracellular Permeabilization Buffer (10X) ReferenceF. Ye et al. (Feb 2025) Frontiers in Immunology 16AWT020: a novel fusion protein harnessing PD-1 blockade and selective IL-2 Cis-activation for enhanced anti-tumor immunity and diminished toxicity
The clinical success of the immune checkpoint inhibitor (ICI) targeting programmed cell death protein 1 (PD-1) has revolutionized cancer treatment. However, the full potential of PD-1 blockade therapy remains unrealized, as response rates are still low across many cancer types. Interleukin-2 (IL-2)-based immunotherapies hold promise, as they can stimulate robust T cell expansion and enhance effector function - activities that could synergize potently with PD-1 blockade. Yet, IL-2 therapies also carry a significant drawback: they can trigger severe systemic toxicities and induce immune suppression by expanding regulatory T cells. To overcome the challenges of PD-1 blockade and IL-2 therapies while enhancing safety and efficacy, we have engineered a novel fusion protein, AWT020, combining a humanized anti-PD-1 nanobody and an engineered IL-2 mutein (IL-2c). The IL-2c component of AWT020 has been engineered to exhibit no binding to the IL-2 receptor alpha (IL-2Rα) subunit and attenuated affinity for the IL-2 receptor beta and gamma (IL-2Rβγ) complex, aiming to reduce systemic immune cell activation, thereby mitigating the severe toxicity often associated with IL-2 therapies. The anti-PD-1 antibody portion of AWT020 serves a dual purpose: it precisely delivers the IL-2c payload to tumor-infiltrating T cells while blocking the immune-inhibitory signals mediated by the PD-1 pathway. AWT020 showed significantly enhanced pSTAT5 signaling in PD-1 expressing cells and promoted the proliferation of activated T cells over natural killer (NK) cells. In preclinical studies using both anti-PD-1-sensitive and -resistant mouse tumor models, the mouse surrogate of AWT020 (mAWT020) demonstrated markedly enhanced anti-tumor efficacy compared to an anti-PD-1 antibody, IL-2, or the combination of an anti-PD-1 antibody and IL-2. In addition, the mAWT020 treatment was well-tolerated, with minimal signs of toxicity. Immune profiling revealed that mAWT020 preferentially expands CD8 + T cells within tumors, sparing peripheral T and NK cells. Notably, this selective tumoral T-cell stimulation enables potent tumor-specific T-cell responses, underscoring the molecule’s enhanced efficacy and safety. The AWT020 fusion protein offers a promising novel immunotherapeutic strategy by integrating PD-1 blockade and IL-2 signaling, conferring enhanced anti-tumor activity with reduced toxicity.Catalog #: Product Name: 10971 ImmunoCult™ Human CD3/CD28 T Cell Activator 100-0784 ImmunoCult™ Human CD3/CD28 T Cell Activator Catalog #: 10971 Product Name: ImmunoCult™ Human CD3/CD28 T Cell Activator Catalog #: 100-0784 Product Name: ImmunoCult™ Human CD3/CD28 T Cell Activator ReferenceM. Takalo et al. (Mar 2025) Journal of Neuroinflammation 22 9The protective PLCγ2-P522R variant mitigates Alzheimer’s disease-associated pathologies by enhancing beneficial microglial functions
Phospholipase C gamma 2, proline 522 to arginine (PLCγ2-P522R) is a protective variant that reduces the risk of Alzheimer’s disease (AD). Recently, it was shown to mitigate β-amyloid pathology in a 5XFAD mouse model of AD. Here, we investigated the protective functions of the PLCγ2-P522R variant in a less aggressive APP/PS1 mouse model of AD and assessed the underlying cellular mechanisms using mouse and human microglial models. The effects of the protective PLCγ2-P522R variant on microglial activation, AD-associated β-amyloid and neuronal pathologies, and behavioral changes were investigated in PLCγ2-P522R knock-in variant mice crossbred with APP/PS1 mice. Transcriptomic, proteomic, and functional studies were carried out using microglia isolated from mice carrying the PLCγ2-P522R variant. Finally, microglia-like cell models generated from human blood and skin biopsy samples of PLCγ2-P522R variant carriers were employed. The PLCγ2-P522R variant decreased β-amyloid plaque count and coverage in female APP/PS1 mice. Moreover, the PLCγ2-P522R variant promoted anxiety in these mice. The area of the microglia around β-amyloid plaques was also increased in mice carrying the PLCγ2-P522R variant, while β-amyloid plaque-associated neuronal dystrophy and the levels of certain cytokines, including IL-6 and IL-1β, were reduced. These alterations were revealed through [18F]FEPPA PET imaging and behavioral studies, as well as various cytokine immunoassays, transcriptomic and proteomic analyses, and immunohistochemical analyses using mouse brain tissues. In cultured mouse primary microglia, the PLCγ2-P522R variant reduced the size of lipid droplets. Furthermore, transcriptomic and proteomic analyses revealed that the PLCγ2-P522R variant regulated key targets and pathways involved in lipid metabolism, mitochondrial fatty acid oxidation, and inflammatory/interferon signaling in acutely isolated adult mouse microglia and human monocyte-derived microglia-like cells. Finally, the PLCγ2-P522R variant also increased mitochondrial respiration in human iPSC-derived microglia. These findings suggest that the PLCγ2-P522R variant exerts protective effects against β-amyloid and neuronal pathologies by increasing microglial responsiveness to β-amyloid plaques in APP/PS1 mice. The changes observed in lipid/fatty acid and mitochondrial metabolism revealed by the omics and metabolic assessments of mouse and human microglial models suggest that the protective effects of the PLCγ2-P522R variant are potentially associated with increased metabolic capacity of microglia. The online version contains supplementary material available at 10.1186/s12974-025-03387-6.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 05310 STEMdiffâ„¢ Hematopoietic Kit Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05310 Product Name: STEMdiffâ„¢ Hematopoietic Kit ReferenceX. Liu et al. (Mar 2025) Stem Cell Research & Therapy 16Purine metabolism in bone marrow microenvironment inhibits hematopoietic stem cell differentiation under microgravity
Spaceflight and microgravity environments have been shown to cause significant health impairments, including bone loss, immune dysfunction, and hematopoietic disorders. Hematopoietic stem cells (HSCs), as progenitors of the hematopoietic system, are critical for the continuous renewal and regulation of immune cells. Therefore, elucidating the regulatory mechanisms governing HSC fate and differentiation in microgravity environments is of paramount importance. In this study, hindlimb unloading (HU) was employed in mice to simulate microgravity conditions. After 28 days of HU, cells were isolated for analysis. Flow cytometry and colony-forming assays were utilized to assess changes in HSC proliferation and differentiation. Additionally, transcriptomic and untargeted metabolomic sequencing were performed to elucidate alterations in the metabolic pathways of the bone marrow microenvironment and their molecular regulatory effects on HSCs fate. Our findings revealed that 28 days of HU impaired hematopoietic function, leading to multi-organ damage and hematological disorders. The simulated microgravity environment significantly increased the HSCs population in the bone marrow, particularly within the long-term and short-term subtypes, while severely compromising the differentiation capacity of hematopoietic stem/progenitor cells. Transcriptomic analysis of HSCs, combined with metabolomic profiling of bone marrow supernatants, identified 1,631 differentially expressed genes and 58 metabolites with altered abundance. Gene set enrichment analysis indicated that HU suppressed key pathways, including hematopoietic cell lineage and MAPK signaling. Furthermore, integrated analyses revealed that metabolites affected by HU, particularly hypoxanthine enriched in the purine metabolism pathway, were closely associated with hematopoietic cell lineage and MAPK signaling pathways. Molecular docking simulations and in vitro experiments confirmed that hypoxanthine interacts directly with core molecules within these pathways, influencing their expression. These findings demonstrate that hypoxanthine in the bone marrow supernatant acts as a signaling mediator under microgravity, influencing HSCs fate by modulating hematopoietic cell lineage and MAPK signaling pathways. This study offers novel insights into the impact of microgravity on HSC fate and gene expression, underscoring the pivotal role of bone marrow microenvironmental metabolic changes in regulating key signaling pathways that determine hematopoietic destiny. The online version contains supplementary material available at 10.1186/s13287-025-04213-9.Catalog #: Product Name: 03434 MethoCultâ„¢ GF M3434 Catalog #: 03434 Product Name: MethoCultâ„¢ GF M3434 Safety Data SheetCatalog #: Product Name: 100-1133 EasySepâ„¢ Human Bone Marrow CD138 Positive Selection Kit Catalog #: 100-1133 Product Name: EasySepâ„¢ Human Bone Marrow CD138 Positive Selection Kit ReferenceC. D. Rouault et al. (Mar 2025) Nature Communications 16Inhibition of the STAT3/Fanconi anemia axis is synthetic lethal with PARP inhibition in breast cancer
The targeting of cancer stem cells (CSCs) has proven to be an effective approach for limiting tumor progression, thus necessitating the identification of new drugs with anti-CSC activity. Through a high-throughput drug repositioning screen, we identify the antibiotic Nifuroxazide (NIF) as a potent anti-CSC compound. Utilizing a click chemistry strategy, we demonstrate that NIF is a prodrug that is specifically bioactivated in breast CSCs. Mechanistically, NIF-induced CSC death is a result of a synergistic action that combines the generation of DNA interstrand crosslinks with the inhibition of the Fanconi anemia (FA) pathway activity. NIF treatment mimics FA-deficiency through the inhibition of STAT3, which we identify as a non-canonical transcription factor of FA-related genes. NIF induces a chemical HRDness (Homologous Recombination Deficiency) in CSCs that (re)sensitizes breast cancers with innate or acquired resistance to PARP inhibitor (PARPi) in patient-derived xenograft models. Our results suggest that NIF may be useful in combination with PARPi for the treatment of breast tumors, regardless of their HRD status. Subject terms: Breast cancer, Mechanisms of disease, Target identification, Cancer stem cellsCatalog #: Product Name: 01700 ALDEFLUOR™ Kit Catalog #: 01700 Product Name: ALDEFLUOR™ Kit ReferenceB. Cui et al. (Mar 2025) Signal Transduction and Targeted Therapy 10Gut dysbiosis conveys psychological stress to activate LRP5/β-catenin pathway promoting cancer stemness
Psychological stress causes gut microbial dysbiosis and cancer progression, yet how gut microbiota determines psychological stress-induced tumor development remains unclear. Here we showed that psychological stress promotes breast tumor growth and cancer stemness, an outcome that depends on gut microbiota in germ-free and antibiotic-treated mice. Metagenomic and metabolomic analyses revealed that psychological stress markedly alters the composition and abundance of gut microbiota, especially Akkermansia muciniphila ( A. muciniphila ), and decreases short-chain fatty acid butyrate. Supplement of active A. muciniphila , butyrate or a butyrate-producing high fiber diet dramatically reversed the oncogenic property and anxiety-like behavior of psychological stress in a murine spontaneous tumor model or an orthotopic tumor model. Mechanistically, RNA sequencing analysis screened out that butyrate decreases LRP5 expression to block the activation of Wnt/β-catenin signaling pathway, dampening breast cancer stemness. Moreover, butyrate as a HDAC inhibitor elevated histone H3K9 acetylation level to transcriptionally activate ZFP36, which further accelerates LRP5 mRNA decay by binding adenine uridine-rich (AU-rich) elements of LRP5 transcript. Clinically, fecal A. muciniphila and serum butyrate were inversely correlated with tumoral LRP5/β-catenin expression, poor prognosis and negative mood in breast cancer patients. Altogether, our findings uncover a microbiota-dependent mechanism of psychological stress-triggered cancer stemness, and provide both clinical biomarkers and potential therapeutic avenues for cancer patients undergoing psychological stress. Subject terms: Cancer metabolism, Cancer stem cellsCatalog #: Product Name: 01701 ALDEFLUOR™ Assay Buffer 01705 ALDEFLUOR™ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUOR™ Assay Buffer Catalog #: 01705 Product Name: ALDEFLUOR™ DEAB Reagent ReferenceX. Gao et al. (Feb 2025) Respiratory Research 26Activation of Nrf2 pathway by 4-Octyl itaconate enhances donor lung function in cold preservation settings
Lung transplantation is the primary treatment for end-stage lung diseases. However, ischemia-reperfusion injury (IRI) significantly impacts transplant outcomes. 4-Octyl itaconate (4-OI) has shown potential in mitigating organ IRI, although its effects in lung transplantation require further exploration. BEAS-2B cells were used to model transplantation, assessing the effects of 4-OI through viability, apoptosis, and ROS assays. qRT-PCR analyzed cytokine transcription post-cold ischemia/reperfusion (CI/R). RNA sequencing and Gene Ontology analysis elucidated 4-OI’s mechanisms of action, confirmed by Western blotting. ALI-airway and lung transplantation organoid models evaluated improvements in bronchial epithelial morphology and function due to 4-OI. ELISA measured IL-6 and IL-8 levels. Rat models of extended cold preservation and non-heart-beating transplantation assessed 4-OI’s impact on lung function, injury, and inflammation. Our findings indicate that 4-OI (100 µM) during cold preservation effectively maintained cell viability, decreased apoptosis, and reduced ROS production in BEAS-2B cells under CI/R conditions. It also downregulated pro-inflammatory cytokine transcription, including IL1B, IL6, and TNF. Inhibition of Nrf2 partially reversed these protective effects. In cold preservation solutions, 4-OI upregulated Nrf2 target genes such as NQO1, HMOX1, and SLC7A11. In ALI airway models, 4-OI enhanced bronchial epithelial barrier integrity and ciliary beat function after CI/R. In rat models, 4-OI administration improved lung function and reduced pulmonary edema, tissue injury, apoptosis, and systemic inflammation following extended cold preservation or non-heart-beating lung transplantation. Incorporating 4-OI into cold preservation solutions appears promising for alleviating CI/R-induced bronchial epithelial injury and enhancing lung transplant outcomes via Nrf2 pathway activation. The online version contains supplementary material available at 10.1186/s12931-025-03151-7.Catalog #: Product Name: 05001 PneumaCult™-ALI Medium 05040 PneumaCult™-Ex Plus Medium Catalog #: 05001 Product Name: PneumaCult™-ALI Medium Catalog #: 05040 Product Name: PneumaCult™-Ex Plus Medium ReferenceZ. Song et al. (Feb 2025) Genome Biology 26Mapping snoRNA-target RNA interactions in an RNA-binding protein-dependent manner with chimeric eCLIP
Small nucleolar RNAs (snoRNAs) are non-coding RNAs that function in ribosome and spliceosome biogenesis, primarily by guiding modifying enzymes to specific sites on ribosomal RNA (rRNA) and spliceosomal RNA (snRNA). However, many orphan snoRNAs remain uncharacterized, with unidentified or unvalidated targets, and studies on additional snoRNA-associated proteins are limited. We adapted an enhanced chimeric eCLIP approach to comprehensively profile snoRNA-target RNA interactions using both core and accessory snoRNA-binding proteins as baits. Using core snoRNA-binding proteins, we confirmed most annotated snoRNA-rRNA and snoRNA-snRNA interactions in mouse and human cell lines and called novel, high-confidence interactions for orphan snoRNAs. While some of these interactions result in chemical modification, others may have modification-independent functions. We showed that snoRNA ribonucleoprotein complexes containing certain accessory proteins, like WDR43 and NOLC1, enriched for specific subsets of snoRNA-target RNA interactions with distinct roles in ribosome and spliceosome biogenesis. Notably, we discovered that SNORD89 guides 2′-O-methylation at two neighboring sites in U2 snRNA that fine-tune splice site recognition. Chimeric eCLIP of snoRNA-associating proteins enables a comprehensive framework for studying snoRNA-target interactions in an RNA-binding protein-dependent manner, revealing novel interactions and regulatory roles in RNA biogenesis. The online version contains supplementary material available at 10.1186/s13059-025-03508-7.Catalog #: Product Name: 05790 BrainPhys™ Neuronal Medium Catalog #: 05790 Product Name: BrainPhys™ Neuronal Medium Safety Data SheetCatalog #: Product Name: 100-1079 EasySep™ Total Nucleic Acid Extraction Kit Catalog #: 100-1079 Product Name: EasySep™ Total Nucleic Acid Extraction Kit ReferenceLee et al. (Feb 2025) Stem Cell Research & Therapy 16 1Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model
Induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) have greater potential for generating chondrocytes without hypertrophic and fibrotic phenotypes compared to bone marrow-derived mesenchymal stem/stromal cells (BMSCs). However, there is a lack of research demonstrating the use of autologous iMSCs for repairing articular chondral lesions in large animal models. In this study, we aimed to evaluate the effectiveness of autologous miniature pig (minipig) iMSC-chondrocyte (iMSC-Ch)-laden implants in comparison to autologous BMSC-chondrocyte (BMSC-Ch)-laden implants for cartilage repair in porcine femoral condyles. iMSCs and BMSCs were seeded into fibrin glue/nanofiber constructs and cultured with chondrogenic induction media for 7 days before implantation. To assess the regenerative capacity of the cells, 19 skeletally mature Yucatan minipigs were randomly divided into microfracture control, acellular scaffold, iMSC, and BMSC subgroups. A cylindrical defect measuring 7Â mm in diameter and 0.6Â mm in depth was created on the articular cartilage surface without violating the subchondral bone. The defects were then left untreated or treated with acellular or cellular implants. Both cellular implant-treated groups exhibited enhanced joint repair compared to the microfracture and acellular control groups. Immunofluorescence analysis yielded significant findings, showing that cartilage treated with iMSC-Ch implants exhibited higher expression of COL2A1 and minimal to no expression of COL1A1 and COL10A1, in contrast to the BMSC-Ch-treated group. This indicates that the iMSC-Ch implants generated more hyaline cartilage-like tissue compared to the BMSC-Ch implants. Our findings contribute to filling the knowledge gap regarding the use of autologous iPSC derivatives for cartilage repair in a translational animal model. Moreover, these results highlight their potential as a safe and effective therapeutic strategy. The online version contains supplementary material available at 10.1186/s13287-025-04215-7.Catalog #: Product Name: 05230 STEMdiffâ„¢ Trilineage Differentiation Kit 05240 STEMdiffâ„¢ Mesenchymal Progenitor Kit 05445 MesenCultâ„¢-ACF Plus Medium Catalog #: 05230 Product Name: STEMdiffâ„¢ Trilineage Differentiation Kit Catalog #: 05240 Product Name: STEMdiffâ„¢ Mesenchymal Progenitor Kit Catalog #: 05445 Product Name: MesenCultâ„¢-ACF Plus Medium Items 625 to 636 of 14010 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2905 items
- Reference 7990 items
- Safety Data Sheet 3053 items
- Technical Manual 62 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 4 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 742 items
- Infectious Diseases 4 items
- Neuroscience 492 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 753 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 252 items
- STEMdiff 55 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 26 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 382 items
- Neurons 136 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 40 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.