Product Information
Items 493 to 504 of 13914 total
- ReferenceM. L. Price et al. (Apr 2025) Journal of Molecular Endocrinology 74 4
Identification of anti-resorptive GPCRs by high-content imaging in human osteoclasts
Osteoporosis diagnoses are increasing in the ageing population, and although some treatments exist, these have several disadvantages, highlighting the need to identify new drug targets. G protein-coupled receptors (GPCRs) are transmembrane proteins whose surface expression and extracellular activation make them desirable drug targets. Our previous studies have identified 144 GPCR genes to be expressed in primary human osteoclasts, which could provide novel drug targets. The development of high-throughput assays to assess osteoclast activity would improve the efficiency at which we could assess the effect of GPCR activation on human bone cells and could be utilised for future compound screening. Here, we assessed the utility of a high-content imaging (HCI) assay that measured cytoplasmic-to-nuclear translocation of the nuclear factor of activated T cells-1 (NFATc1), a transcription factor that is essential for osteoclast differentiation, and resorptive activity. We first demonstrated that the HCI assay detected changes in NFATc1 nuclear translocation in human primary osteoclasts using GIPR as a positive control, and then developed an automated analysis platform to assess NFATc1 in nuclei in an efficient and unbiased manner. We assessed six GPCRs simultaneously and identified four receptors (FFAR2, FFAR4, FPR1 and GPR35) that reduced osteoclast activity. Bone resorption assays and measurements of TRAP activity verified that activation of these GPCRs reduced osteoclast activity, and that receptor-specific antagonists prevented these effects. These studies demonstrate that HCI of NFATc1 can accurately assess osteoclast activity in human cells, reducing observer bias and increasing efficiency of target detection for future osteoclast-targeted osteoporosis therapies.Catalog #: Product Name: 15028 RosetteSepâ„¢ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSepâ„¢ Human Monocyte Enrichment Cocktail ReferenceD. A. Ingram et al. (Apr 2025) Nature Communications 16GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau
Lipid dyshomeostasis and tau pathology are present in frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD). However, the relationship between lipid dyshomeostasis and tau pathology remains unclear. We report that GRAM Domain Containing 1B (GRAMD1B), a nonvesicular cholesterol transporter, is increased in excitatory neurons of human neural organoids (HNOs) with the MAPT R406W mutation. Human FTLD, AD cases, and PS19 tau mice also have increased GRAMD1B expression. We show that overexpression of GRAMD1B increases levels of free cholesterol, lipid droplets, and impairs autophagy flux. Modulating GRAMD1B in iPSC-derived neurons also alters key autophagy-related components such as PI3K, phospho-AKT, and p62, as well as phosphorylated tau, and CDK5R1. Blocking GRAMD1B function decreases free cholesterol and lipid droplets. Knocking down GRAMD1B additionally reduces phosphorylated tau, and CDK5R1 expression. Our findings elucidate the role of GRAMD1B in the nervous system and highlight its relevance to FTLD and AD. Subject terms: Diseases of the nervous system, AgeingCatalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 34811 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 08600 STEMdiffâ„¢ Forebrain Neuron Differentiation Kit 08605 STEMdiffâ„¢ Forebrain Neuron Maturation Kit 08570 STEMdiffâ„¢ Cerebral Organoid Kit Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 34811 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 Catalog #: 08600 Product Name: STEMdiffâ„¢ Forebrain Neuron Differentiation Kit Catalog #: 08605 Product Name: STEMdiffâ„¢ Forebrain Neuron Maturation Kit Catalog #: 08570 Product Name: STEMdiffâ„¢ Cerebral Organoid Kit ReferenceH. Xu et al. (Apr 2025) Cancer Cell International 25 20Single-cell transcriptome sequencing reveals the mechanism of Realgar improvement on erythropoiesis in mice with myelodysplastic syndrome
Myelodysplastic syndrome (MDS) is a malignant hematologic disorder with limited curative options, primarily reliant on hematopoietic stem cell transplantation. Anemia, a prevalent symptom of MDS, has few effective treatment strategies. Realgar, though known for its therapeutic effects on MDS, remains poorly understood in terms of its mechanism of action. In this study, both in vivo and in vitro experiments were conducted using Realgar and its primary active component, As 2 S 2 , to examine their impact on mouse erythroblasts at the single-cell level. Realgar treatment significantly altered the transcriptional profiles and cellular composition of bone marrow in mice, both in vivo and in vitro. Differentially expressed genes in erythroblasts regulated by Realgar were identified, unveiling potential regulatory functions and signaling pathways, such as heme biosynthesis, hemoglobin production, oxygen binding, IL-17 signaling, and MAPK pathways. These findings suggest that Realgar enhances the differentiation of erythroblasts in mouse bone marrow and improves overall blood cell counts. This work offers preliminary insights into Realgar’s mechanisms, expands the understanding of this mineral medicine, and may inform strategies to optimize its therapeutic potential in hematologic diseases. The online version contains supplementary material available at 10.1186/s12935-025-03768-0.Catalog #: Product Name: 03334 MethoCult™ M3334 Catalog #: 03334 Product Name: MethoCult™ M3334 ReferenceD. Reginensi et al. (Apr 2025) Scientific Reports 15Region-specific brain decellularized extracellular matrix promotes cell recovery in an in vitro model of stroke
Brain decellularized extracellular matrix (ECM) can be an attractive scaffold capable of mimicking the native ecosystem of the central nervous system tissue. We studied the in vitro response of neural cultures exposed to region-specific brain decellularized ECM scaffolds from three distinct neuroanatomical sections: cortex, cerebellum and remaining areas. First, each brain region was evaluated with the isotropic fractionator method to understand the cellular composition of the different cerebral areas. Second, the cerebral regions were subjected to the decellularization process and their respective characterization using molecular, histological, and ultrastructural techniques. Third, the levels of neurotrophic factors in the decellularized brain scaffold were analyzed. Fourth, we studied the region-specific brain decellularized ECM as a mimetic platform for the maturation of PC12 cells, as a unidirectional model of differentiation. Finally, in vitro studies were carried out to evaluate the cell recovery capacity of brain decellularized ECM under stroke-mimetic conditions. Our results show that region-specific brain decellularized ECM can serve as a biomimetic scaffold capable of promoting the growth of neural lineage cells and, in addition, it possesses a combination of structural and biochemical signals (e.g., neurotrophic factors) that are capable of inducing cell phenotypic changes and promote viability and cell recovery in a stroke/ischemia model in vitro. The online version contains supplementary material available at 10.1038/s41598-025-95656-w.Catalog #: Product Name: 05790 BrainPhysâ„¢ Neuronal Medium Catalog #: 05790 Product Name: BrainPhysâ„¢ Neuronal Medium ReferenceR. Dalangin et al. (Apr 2025) Nature Communications 16Far-red fluorescent genetically encoded calcium ion indicators
Genetically encoded calcium ion (Ca 2+ ) indicators (GECIs) are widely-used molecular tools for functional imaging of Ca 2+ dynamics and neuronal activities with single-cell resolution. Here we report the design and development of two far-red fluorescent GECIs, FR-GECO1a and FR-GECO1c, based on the monomeric far-red fluorescent proteins mKelly1 and mKelly2. FR-GECOs have excitation and emission maxima at ~596 nm and ~644 nm, respectively, display large responses to Ca 2+ in vitro (Δ F / F 0 = 6 for FR-GECO1a, 18 for FR-GECO1c), are bright under both one-photon and two-photon illumination, and have high affinities (apparent K d = 29 nM for FR-GECO1a, 83 nM for FR-GECO1c) for Ca 2+ . FR-GECOs offer sensitive and fast detection of single action potentials in neurons, and enable in vivo all-optical manipulation and measurement of cellular activities in combination with optogenetic actuators. Subject terms: Fluorescent proteins, Optogenetics, Zebrafish, Molecular neuroscience, Calcium signallingCatalog #: Product Name: 05790 BrainPhys™ Neuronal Medium Catalog #: 05790 Product Name: BrainPhys™ Neuronal Medium ReferenceJ. H. Hammel et al. (Apr 2025) APL Bioengineering 9 2Interstitial fluid flow in an engineered human lymph node stroma model modulates T cell egress and stromal change
The lymph node (LN) performs essential roles in immunosurveillance throughout the body. Developing in vitro models of this key tissue is of great importance to enhancing physiological relevance in immunoengineering. The LN consists of stromal populations and immune cells, which are highly organized and bathed in constant interstitial fluid flow (IFF). The stroma, notably the fibroblastic reticular cells (FRCs) and the lymphatic endothelial cells (LECs), play crucial roles in guiding T cell migration and are known to be sensitive to fluid flow. During inflammation, interstitial fluid flow rates drastically increase in the LN. It is unknown how these altered flow rates impact crosstalk and cell behavior in the LN, and most existing in vitro models focus on the interactions between T cells, B cells, and dendritic cells rather than with the stroma. To address this gap, we developed a human engineered model of the LN stroma consisting of FRC-laden hydrogel above a monolayer of LECs in a tissue culture insert with gravity-driven interstitial flow. We found that FRCs had enhanced coverage and proliferation in response to high flow rates, while LECs experienced decreased barrier integrity. We added CD4+ and CD8+ T cells and found that their egress was significantly decreased in the presence of interstitial flow, regardless of magnitude. Interestingly, 3.0 μ m/s flow, but not 0.8 μ m/s flow, correlated with enhanced inflammatory cytokine secretion in the LN stroma. Overall, we demonstrate that interstitial flow is an essential consideration in the lymph node for modulating LN stroma morphology, T cell migration, and inflammation.Catalog #: Product Name: 10971 ImmunoCult™ Human CD3/CD28 T Cell Activator 100-0784 ImmunoCult™ Human CD3/CD28 T Cell Activator Catalog #: 10971 Product Name: ImmunoCult™ Human CD3/CD28 T Cell Activator Catalog #: 100-0784 Product Name: ImmunoCult™ Human CD3/CD28 T Cell Activator ReferenceA. Wiegering et al. (Apr 2025) Nature Communications 16A differential requirement for ciliary transition zone proteins in human and mouse neural progenitor fate specification
Studying ciliary genes in the context of the human central nervous system is crucial for understanding the underlying causes of neurodevelopmental ciliopathies. Here, we use pluripotent stem cell-derived spinal organoids to reveal distinct functions of the ciliopathy gene RPGRIP1L in humans and mice, and uncover an unexplored role for cilia in human axial patterning. Previous research has emphasized Rpgrip1l critical functions in mouse brain and spinal cord development through the regulation of SHH/GLI pathway. Here, we show that RPGRIP1L is not required for SHH activation or motoneuron lineage commitment in human spinal progenitors and that this feature is shared by another ciliopathy gene, TMEM67 . Furthermore, human RPGRIP1L -mutant motoneurons adopt hindbrain and cervical identities instead of caudal brachial identity. Temporal transcriptome analysis reveals that this antero-posterior patterning defect originates in early axial progenitors and correlates with cilia loss. These findings provide important insights into the role of cilia in human neural development. Subject terms: Ciliogenesis, Pattern formation, Pluripotent stem cells, NeurogenesisCatalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ ReferenceT. Zhang et al. (Apr 2025) Cancer Cell International 25 6Heme oxygenase 1 confers gilteritinib resistance in FLT3-ITD acute myeloid leukemia in a STAT6-dependent manner
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. We previously discovered that heme oxygenase 1 (HO1) is crucial for chemoresistance in AML, but the detailed molecular mechanism of that remains unclear. RNA sequencing was conducted to assess transcriptomic changes in three pairs of AML cells after regulating the expression of HO1. The molecular mechanism by which HO1 induces gilteritinib resistance in FLT3-ITD (FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD)) AML was evaluated by quantitative real-time PCR (qRT-PCR), CCK-8, flow cytometry, and western blotting. FLT3-ITD AML mouse models were established to investigate the effects of HO1 expression on gilteritinib resistance in vivo. In these three pairs of AML cells, we discovered that HO1-mediated drug resistance is connected to the interleukin-4-mediated signaling pathway (specifically STAT6) only in MV4-11 cells with the FLT3-ITD mutation. Further findings revealed that HO1 overexpression confers gilteritinib resistance in FLT3-ITD AML cell lines and primary individual specimens. While suppression of HO1 sensitized FLT3-ITD AML cell lines and primary individual specimens to gilteritinib. Mechanistically, western blotting and flow cytometry confirmed that HO1-mediated gilteritinib resistance is related to STAT6 phosphorylation in FLT3-ITD AML cell lines and primary individual specimens. Moreover, tumor-bearing mice were employed to determine that HO1 overexpression conferred gilteritinib resistance in vivo. Collectively, these studies illustrate that HO1 may act as a successful treatment target for gilteritinib-resistant FLT3-ITD AML patients. The online version contains supplementary material available at 10.1186/s12935-025-03757-3.Catalog #: Product Name: 09720 StemSpanâ„¢ Leukemic Cell Culture Kit Catalog #: 09720 Product Name: StemSpanâ„¢ Leukemic Cell Culture Kit ReferenceA. Sivakoses et al. (Mar 2025) PeerJ 13 1Triple negative breast cancer cells acquire lymphocyte proteins and genomic DNA during trogocytosis with T cells
Trogocytosis is the process by which a recipient cell siphons small membrane fragments and proteins from a donor cell and can be utilized by cancer cells to avoid immune detection. We observed lymphocyte specific protein expressed by triple negative breast cancer (TNBC) cells via immunofluorescence imaging of patient samples. Image analysis of Cluster of Differentiation 45RA (CD45RA) expression, a naïve T cell specific protein, revealed that all stages of TNBCs express CD45RA. Flow cytometry revealed TNBC cells trogocytose CD45 protein from T cells. We also showed that the acquisition of these lymphoid markers is contact dependent. Confocal and super-resolution imaging further revealed CD45+ spherical structures containing T cell genomic DNA inside TNBC cells after co-culture. Trogocytosis between T cells and TNBC cells altered tumor cell expression of PTPRC , the gene that encodes for CD45. Our results revealed that CD45 is obtained by TNBC cells from T cells via trogocytosis and that TNBC cells express CD45 intracellularly and on the membrane.Catalog #: Product Name: 10970 ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator 100-0785 ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator Catalog #: 10970 Product Name: ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator Catalog #: 100-0785 Product Name: ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator ReferenceO. Drummond-Guy et al. (Mar 2025) Frontiers in Oncology 15Polysialic acid is upregulated on activated immune cells and negatively regulates anticancer immune activity
Suppression of anticancer immune function is a key driver of tumorigenesis. Identifying molecular pathways that inhibit anticancer immunity is critical for developing novel immunotherapeutics. One such molecule that has recently been identified is the carbohydrate polysialic acid (polySia), whose expression is dramatically upregulated on both cancer cells and immune cells in breast cancer patient tissues. The role of polySia in the anticancer immune response, however, remains incompletely understood. In this study, we profile polySia expression on both healthy primary immune cells and on infiltrating immune cells in the tumour microenvironment (TME). These studies reveal polySia expression on multiple immune cell subsets in patient breast tumors. We find that stimulation of primary T-cells and macrophages in vitro induces a significant upregulation of polySia expression. We subsequently show that polySia is appended to a range of different carrier proteins within these immune cells. Finally, we find that selective removal of polySia can significantly potentiate killing of breast cancer cells by innate immune cells. These studies implicate polySia as a significant negative regulator of anticancer immunity.Catalog #: Product Name: 10981 ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó T Cell Expansion Medium 100-0956 ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó Catalog #: 10981 Product Name: ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó T Cell Expansion Medium Catalog #: 100-0956 Product Name: ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó ReferenceK. Tanaka et al. (Apr 2025) Scientific Reports 15 23Robust and reproducible human intestinal organoid-derived monolayer model for analyzing drug absorption
Predicting the absorption of orally administered drugs is crucial to drug development. Current in vitro models lack physiological relevance, robustness, and reproducibility, thus hindering reliable predictions. In this study, we developed a reproducible and robust culture method to generate a human intestinal organoid-derived monolayer model that can be applied to study drug absorption through a step-by-step approach. Our model showed similarity to primary enterocytes in terms of the drug absorption-related gene expression profile, tight barrier function, tolerability toward artificial bile juice, drug transporter and metabolizing enzyme function, and nuclear receptor activity. This method can be applied to organoids derived from multiple donors. The permeability of launched 19 drugs in our model demonstrated a correlation with human Fa values, with an R 2 value of 0.88. Additionally, by combining the modeling and simulation approaches, the estimated FaFg values for seven out of nine drugs, including CYP3A substrates, fell within 1.5 times the range of the human FaFg values. Applying this method to the drug discovery process might bridge the gap between preclinical and clinical research and increase the success rates of drug development.Catalog #: Product Name: 06010 IntestiCult™ Organoid Growth Medium (Human) Catalog #: 06010 Product Name: IntestiCult™ Organoid Growth Medium (Human) ReferenceI. Köhler et al. (Mar 2025) Frontiers in Cellular Neuroscience 19Chemogenetic activation of Gq signaling modulates dendritic development of cortical neurons in a time- and layer-specific manner
Designer receptors exclusively activated by designer drugs (DREADDs) are established tools for modulating neuronal activity. Calcium-mobilizing DREADD hM3Dq has been widely used to enhance neuronal activity. hM3Dq activates the Gq protein signaling cascade and mimics the action of native Gq protein-coupled receptors such as muscarinic m1 and m3 receptors leading to calcium release from intracellular storages. Depolarization evoked by increased intracellular calcium levels is an important factor for neuronal maturation. Here, we used repetitive activation of biolistically overexpressed hM3Dq to increase the activity of individual neurons differentiating in organotypic slice cultures of rat visual cortex. HM3Dq was activated by 3 μM clozapine-N-oxide (CNO) dissolved in H 2 O. Transfectants expressing hM3Dq mock-stimulated with H 2 O served as batch-internal controls. Pyramidal cells and multipolar interneurons were analyzed after treatment from DIV 5–10, DIV 10–20, and DIV 15–20 to investigate if Gq signaling is involved in dendritic maturation. Results show that hM3Dq activation accelerated the maturation of apical dendrites of L2/3 pyramidal cells in the early, but no longer in the later time windows. In contrast, dendritic dimensions of L5/6 pyramidal cells and interneurons were not altered at DIV 10. These findings suggest a growth-promoting role of activated Gq signaling selectively for early postnatal L2/3 pyramidal cells. Unexpectedly, hM3Dq activation from DIV 10–20 reduced the dendritic complexity of L5/6 pyramidal cells and multipolar interneurons. Together, results suggest a role of Gq signaling for neuronal differentiation and support evidence that it may also limit dendritic growth.Catalog #: Product Name: 05711 NeuroCult™ SM1 Neuronal Supplement Catalog #: 05711 Product Name: NeuroCult™ SM1 Neuronal Supplement Items 493 to 504 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.