Product Information
Items 481 to 492 of 13914 total
- ReferenceH. Costa-Verdera et al. (Apr 2025) Nature Communications 16
AAV vectors trigger DNA damage response-dependent pro-inflammatory signalling in human iPSC-derived CNS models and mouse brain
Adeno-associated viral (AAV) vector-based gene therapy is gaining foothold as treatment for genetic neurological diseases with encouraging clinical results. Nonetheless, dose-dependent adverse events have emerged in recent clinical trials through mechanisms that remain unclear. We have modelled here the impact of AAV transduction in cell models of the human central nervous system (CNS), taking advantage of induced pluripotent stem cells. Our work uncovers vector-induced innate immune mechanisms that contribute to cell death. While empty AAV capsids were well tolerated, the AAV genome triggered p53-dependent DNA damage responses across CNS cell types followed by the induction of inflammatory responses. In addition, transgene expression led to MAVS-dependent activation of type I interferon responses. Formation of DNA damage foci in neurons and gliosis were confirmed in murine striatum upon intraparenchymal AAV injection. Transduction-induced cell death and gliosis could be prevented by inhibiting p53 or by acting downstream on STING- or IL-1R-mediated responses. Together, our work identifies innate immune mechanisms of vector sensing in the CNS that can potentially contribute to AAV-associated neurotoxicity. Subject terms: Neuroimmunology, Innate immunity, Neural stem cellsCatalog #: Product Name: 34811 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 08600 STEMdiffâ„¢ Forebrain Neuron Differentiation Kit 08605 STEMdiffâ„¢ Forebrain Neuron Maturation Kit Catalog #: 34811 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 Catalog #: 08600 Product Name: STEMdiffâ„¢ Forebrain Neuron Differentiation Kit Catalog #: 08605 Product Name: STEMdiffâ„¢ Forebrain Neuron Maturation Kit Safety Data SheetCatalog #: Product Name: 100-0697 EasySepâ„¢ Human Monocyte Isolation Kit Catalog #: 100-0697 Product Name: EasySepâ„¢ Human Monocyte Isolation Kit ReferenceH. Matuskova et al. (Apr 2025) Journal for Immunotherapy of Cancer 13 4Novel PD-1-targeted, activity-optimized IL-15 mutein SOT201 acting in cis provides antitumor activity superior to PD1-IL2v
SOT201 and its murine surrogate mSOT201 are novel cis-acting immunocytokines consisting of a humanized/murinized/, Fc-silenced anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb) fused to an attenuated human interleukin (IL)-15 and the IL-15Rα sushi+ domain. Murine mPD1-IL2v is a conjugate of a murinized, Fc silenced anti-PD-1 mAb bearing human IL-2 with abolished IL-2Rα binding. These immunocytokines spatiotemporally reinvigorate PD-1 + CD8 + tumor-infiltrating lymphocytes (TILs) via cis-activation and concomitantly activate the innate immunity via IL-2/15Rβγ signaling. Human peripheral blood mononuclear cell and cell lines were used to evaluate cis/trans activity of SOT201. Anti-PD-1 mAb responsive (MC38, CT26) and resistant (B16F10, CT26 STK11 KO) mouse tumor models were used to determine the anticancer efficacy, and the underlying immune cell activity was analyzed via single-cell RNA sequencing and flow cytometry. The expansion of tumor antigen-specific CD8 + T cells by mSOT201 or mPD1-IL2v and memory CD8 + T-cell generation in vivo was determined by flow cytometry. SOT201 delivers attenuated IL-15 to PD-1 + T cells via cis-presentation, reinvigorates exhausted human T cells and induces higher interferon-γ production than pembrolizumab in vitro. mSOT201 administered as a single dose exhibits strong antitumor efficacy with several complete responses in all tested mouse tumor models. While mPD1-IL2v activates CD8 + T cells with a 50-fold higher potency than mSOT201 in vitro, mSOT201 more effectively reactivates effector exhausted CD8 + T cells (Tex), which demonstrate higher cytotoxicity, lower exhaustion and lower immune checkpoint transcriptional signatures in comparison to mPD1-IL2v in MC38 tumors in vivo. This can be correlated with a higher rate of complete responses in the MC38 tumor model following mSOT201 treatment when compared with mPD1-IL2v. mSOT201 increased the relative number of tumor antigen-specific CD8 + T cells, and unlike mPD1-IL2v stimulated greater expansion of adoptively transferred ovalbumin-primed CD8 + T cells simultaneously limiting the peripheral CD8 + T-cell sink, leading to the development of memory CD8 + T cells in vivo. SOT201 represents a promising therapeutic candidate that preferentially targets PD-1 + TILs, delivering balanced cytokine activity for reviving CD8 + Tex cells in tumors. SOT201 is currently being evaluated in the Phase I clinical study VICTORIA-01 ( NCT06163391 ) in patients with advanced metastatic cancer.Catalog #: Product Name: 10971 ImmunoCult™ Human CD3/CD28 T Cell Activator 100-0784 ImmunoCult™ Human CD3/CD28 T Cell Activator Catalog #: 10971 Product Name: ImmunoCult™ Human CD3/CD28 T Cell Activator Catalog #: 100-0784 Product Name: ImmunoCult™ Human CD3/CD28 T Cell Activator ReferenceK. A. Young et al. (Apr 2025) Nature Communications 16Elevated mitochondrial membrane potential is a therapeutic vulnerability in Dnmt3a -mutant clonal hematopoiesis
The competitive advantage of mutant hematopoietic stem and progenitor cells (HSPCs) underlies clonal hematopoiesis (CH). Drivers of CH include aging and inflammation; however, how CH-mutant cells gain a selective advantage in these contexts is an unresolved question. Using a murine model of CH ( Dnmt3a R878H/+ ), we discover that mutant HSPCs sustain elevated mitochondrial respiration which is associated with their resistance to aging-related changes in the bone marrow microenvironment. Mutant HSPCs have DNA hypomethylation and increased expression of oxidative phosphorylation gene signatures, increased functional oxidative phosphorylation capacity, high mitochondrial membrane potential (Δψm), and greater dependence on mitochondrial respiration compared to wild-type HSPCs. Exploiting the elevated Δψm of mutant HSPCs, long-chain alkyl-TPP molecules (MitoQ, d-TPP) selectively accumulate in the mitochondria and cause reduced mitochondrial respiration, mitochondrial-driven apoptosis and ablate the competitive advantage of HSPCs ex vivo and in vivo in aged recipient mice. Further, MitoQ targets elevated mitochondrial respiration and the selective advantage of human DNMT3A -knockdown HSPCs, supporting species conservation. These data suggest that mitochondrial activity is a targetable mechanism by which CH-mutant HSPCs gain a selective advantage over wild-type HSPCs. Subject terms: Ageing, Haematopoietic stem cells, MitochondriaCatalog #: Product Name: 03434 MethoCult™ GF M3434 09600 StemSpan™ SFEM 09605 StemSpan™ SFEM II 02690 StemSpan™ CC100 Catalog #: 03434 Product Name: MethoCult™ GF M3434 Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09605 Product Name: StemSpan™ SFEM II Catalog #: 02690 Product Name: StemSpan™ CC100 ReferenceN. Akaranuchat et al. (Apr 2025) PLOS One 20 4Efficacy of Quality and Quantity media-cultured mononuclear cells for promoting peripheral nerve regeneration in mouse model
This study aimed to assess the efficacy of Quality and Quantity media-cultured mononuclear cells (QQ-MNCs) for promoting nerve regeneration in a mouse sciatic nerve transection model. Human peripheral blood mononuclear cells (PB-MNCs) and QQ-MNCs derived from healthy volunteers were used/compared. The left sciatic nerve was surgically transected in 27 mice. After complete nerve transection was confirmed, end-to-end direct epineurial nerve repair was performed using 9–0 nylon. Fibrin glue was applied to the tissue around the injury site to limit diffusion of the study treatment followed by application of 0.5 ml phosphate buffered saline (PBS) or PB-MNCs (2x10 6 cells) or QQ-MNCs (2x10 6 cells) to the injury site. The skin was then closed using 6–0 nylon. Histomorphology, immunohistochemistry, electrophysiologic examination, and functional assessment were evaluated at 12-weeks followed by euthanasia and subsequent harvesting of the left sciatic nerves and the left and right gastrocnemius muscles for examination. QQ-MNCs mice exhibited significant improvement in all histomorphologic parameters (axon fiber diameter, myelin thickness, percentage of nerve density) and immunohistochemistry assays (S100, SOX10, GFAP, neurofilament, IL-1β, VEGF, anti-HNA, TNF-α, vWF) compared to PBS mice (all p < 0.05). QQ-MNCs mice also had a significantly higher Basso Mouse Scale score compared to PBS mice ( p = 0.018). The percentage of nerve density adjacent to the injury site was significantly higher in QQ-MNCs mice than in PB-MNCs mice ( p = 0.049). IL-1β expression was significantly lower in QQ-MNCs mice than in PB-MNCs mice ( p = 0.01). QQ-MNCs mice demonstrated significantly better functional and histomorphologic outcomes of nerve regeneration compared to PB-MNCs mice and PBS mice.Catalog #: Product Name: 04236 MethoCult™ SF H4236 Catalog #: 04236 Product Name: MethoCult™ SF H4236 ReferenceH. K. Lee et al. (Apr 2025) Life Science Alliance 8 7STAT5B leukemic mutations, altering SH2 tyrosine 665, have opposing impacts on immune gene programs
Germline activating and deactivating mutations of STAT5b , part of the JAK-STAT signaling pathway, push the immune system and hematopoiesis in opposing directions, tuning systems either up or down.Catalog #: Product Name: 03434 MethoCultâ„¢ GF M3434 Catalog #: 03434 Product Name: MethoCultâ„¢ GF M3434 ReferenceG. Myers et al. (Apr 2025) Nature Communications 16A genome-wide screen identifies genes required for erythroid differentiation
The complete array of genes required for terminal erythroid differentiation remains unknown. To address this knowledge gap, we perform a genome-scale CRISPR knock-out screen in the human erythroid progenitor cell line HUDEP-2 and validate candidate regulators of erythroid differentiation in a custom secondary screen. Comparison of sgRNA abundance in the CRISPR library, proerythroblasts, and orthochromatic erythroblasts, resulted in the identification of genes that are essential for proerythroblast survival and genes that are required for terminal erythroid differentiation. Among the top genes identified are known regulators of erythropoiesis, underscoring the validity of this screen. Notably, using a Log2 fold change of <−1 and false discovery rate of <0.01, the screen identified 277 genes that are required for terminal erythroid differentiation, including multiple genes not previously nominated through GWAS. NHLRC2 , which was previously implicated in hemolytic anemia, was a highly ranked gene. We suggest that anemia due to NHLRC2 mutation results at least in part from a defect in erythroid differentiation. Another highly ranked gene in the screen is VAC14 , which we validated for its requirement in erythropoiesis in vitro and in vivo. Thus, data from this CRISPR screen may help classify the underlying mechanisms that contribute to erythroid disorders. Subject terms: Erythropoiesis, CRISPR-Cas9 genome editing, Haematopoietic stem cellsCatalog #: Product Name: 09600 StemSpan™ SFEM 02690 StemSpan™ CC100 Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 02690 Product Name: StemSpan™ CC100 ReferenceM. Cadefau-Fabregat et al. (Apr 2025) Nature Communications 16Mutant CEBPA promotes tolerance to inflammatory stress through deficient AP-1 activation
The CEBPA transcription factor is frequently mutated in acute myeloid leukemia (AML). Mutations in the CEBPA gene, which are typically biallelic, result in the production of a shorter isoform known as p30. Both the canonical 42-kDa isoform (p42) and the AML-associated p30 isoform bind chromatin and activate transcription, but the specific transcriptional programs controlled by each protein and how they are linked to a selective advantage in AML is not well understood. Here, we show that cells expressing the AML-associated p30 have reduced baseline inflammatory gene expression and display altered dynamics of transcriptional induction in response to LPS, consequently impacting cytokine secretion. This confers p30-expressing cells an increased resistance to the adverse effects of prolonged exposure to inflammatory signals. Mechanistically, we show that these differences primarily arise from the differential regulation of AP-1 family proteins. In addition, we find that the impaired function of the AP-1 member ATF4 in p30-expressing cells alters their response to ER stress. Collectively, these findings uncover a link between mutant CEBPA, inflammation and the stress response, potentially revealing a vulnerability in AML. Subject terms: Gene regulation, Acute myeloid leukaemia, Transcriptional regulatory elements, Epigenetics in immune cellsCatalog #: Product Name: 04230 MethoCult™ H4230 Catalog #: 04230 Product Name: MethoCult™ H4230 ReferenceJ. Chen et al. (Apr 2025) Cellular & Molecular Biology Letters 30 4Troxerutin suppresses the stemness of osteosarcoma via the CD155/SRC/β-catenin signaling axis
Osteosarcoma is the most prevalent primary malignant bone tumor affecting pediatric and adolescent individuals. However, despite the passage of three decades, there has been no notable enhancement in the overall survival rate of patients with osteosarcoma. In recent years, CD155 has been reported to exhibit abnormal amplification in a range of tumors, yet the precise underlying mechanism remains elusive. The objective of this study is to investigate the role of CD155 in osteosarcoma, and to identify drugs that specifically target this molecule, thereby offering a novel direction for the treatment of osteosarcoma. The prognosis of patients with osteosarcoma with high and low expression of CD155 was verified by immunohistochemistry. CCK-8 and colony formation assays were used to detect cell proliferation and drug resistance. Transwell experiments were used to detect cell migration and invasion. The sphere formation experiment was used to evaluate the stemness of tumor cells. Additionally, in vivo animal models were utilized to assess the functional role of CD155 in a biological context. RNA-seq and co-immunoprecipitation methods were used to search for downstream target molecules and signaling pathways of CD155. Finally, virtual screening was used to find drugs targeting CD155. In this study, we have established the significant amplification of CD155 in osteosarcoma. Utilizing a comprehensive array of experimental methods, including CCK-8 assay, colony formation assay, Transwell assay, and in vivo animal models, we unequivocally demonstrate that CD155 significantly potentiates the malignancy of osteosarcoma both in vitro and in vivo. Additionally, our findings reveal that CD155 promotes osteosarcoma stemness by modulating the Wnt/β-catenin signaling pathway. Advanced molecular techniques, such as RNA sequencing and co-immunoprecipitation, have been instrumental in elucidating the mechanism of CD155 in activating the Wnt/β-catenin pathway via the SRC/AKT/GSK3β signaling axis, thereby enhancing the stem-cell-like properties of osteosarcoma cells. To explore targeted therapeutic options, we conducted virtual screening and identified troxerutin as a promising CD155 inhibitor. Our findings reveal that troxerutin effectively inhibits CD155, attenuates the SRC/AKT/GSK3β signaling cascade, diminishes the nuclear localization of β-catenin, and consequently mitigates osteosarcoma stemness. These discoveries position troxerutin as a promising candidate for targeted osteosarcoma therapy. The online version contains supplementary material available at 10.1186/s11658-025-00724-8.Catalog #: Product Name: 01700 ALDEFLUOR™ Kit Catalog #: 01700 Product Name: ALDEFLUOR™ Kit Safety Data SheetCatalog #: Product Name: 100-0686 Human SARS-CoV-2 Nucleoprotein IgG Antibody ELISA Kit Catalog #: 100-0686 Product Name: Human SARS-CoV-2 Nucleoprotein IgG Antibody ELISA Kit ReferenceN. M. Nesbitt et al. (Apr 2025) Nature Communications 16Small molecule BLVRB redox inhibitor promotes megakaryocytopoiesis and stress thrombopoiesis in vivo
Biliverdin IXβ reductase (BLVRB) is an NADPH-dependent enzyme previously implicated in a redox-regulated mechanism of thrombopoiesis distinct from the thrombopoietin (TPO)/c-MPL axis. Here, we apply computational modeling to inform molecule design, followed by de novo syntheses and screening of unique small molecules retaining the capacity for selective BLVRB inhibition as a novel platelet-enhancing strategy. Two distinct classes of molecules are identified, and NMR spectroscopy and co-crystallization studies confirm binding modes within the BLVRB active site and ring stacking between the nicotinamide moiety of the NADP + cofactor. A diazabicyclo derivative displaying minimal off-target promiscuity and excellent bioavailability characteristics promotes megakaryocyte speciation in biphenotypic (erythro/megakaryocyte) cellular models and synergizes with TPO-dependent megakaryocyte formation in hematopoietic stem cells. Upon oral delivery into mice, this inhibitor expands platelet recovery in stress thrombopoietic models with no adverse effects. In this work, we identify and validate a cellular redox inhibitor retaining the potential to selectively promote megakaryocytopoiesis and enhance stress-associated platelet formation in vivo distinct from TPO receptor agonists. Subject terms: Target validation, Medicinal chemistry, X-ray crystallography, Computational biophysicsCatalog #: Product Name: 09600 StemSpan™ SFEM 09605 StemSpan™ SFEM II 02690 StemSpan™ CC100 Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09605 Product Name: StemSpan™ SFEM II Catalog #: 02690 Product Name: StemSpan™ CC100 Safety Data SheetCatalog #: Product Name: 100-0700 Human SARS-CoV-2 Spike Protein Inhibitor Screening Kit Catalog #: 100-0700 Product Name: Human SARS-CoV-2 Spike Protein Inhibitor Screening Kit Items 481 to 492 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.