Product Information
Items 1741 to 1752 of 13914 total
- Reference(Jun 2024) Nature Communications 15
Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction
To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer’s disease, we performed single nucleus RNA sequencing in 24 Alzheimer’s disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer’s disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer’s disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer’s disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer’s disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer’s disease. Systematic studies are needed to discover molecular determinants of blood brain barrier dysfunction in Alzheimer’s disease. This study identifies perturbed pericytic SMAD3-astrocytic VEGFA interactions as a potential driver of this dysfunction.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0875Lot #:AllLanguage:EnglishProduct Name:CytoView MEAâ„¢ 6-Well Plate, BlackCatalog #:200-0876Lot #:AllLanguage:EnglishProduct Name:CytoView MEAâ„¢ 6-Well Plate, WhiteCatalog #: 200-0875 Lot #: All Language: English Product Name: CytoView MEAâ„¢ 6-Well Plate, Black Catalog #: 200-0876 Lot #: All Language: English Product Name: CytoView MEAâ„¢ 6-Well Plate, White Reference(Jul 2024) Nature Communications 15Identification of unique cell type responses in pancreatic islets to stress
Diabetes involves the death or dysfunction of pancreatic ?-cells. Analysis of bulk sequencing from human samples and studies using in vitro and in vivo models suggest that endoplasmic reticulum and inflammatory signaling play an important role in diabetes progression. To better characterize cell type-specific stress response, we perform multiplexed single-cell RNA sequencing to define the transcriptional signature of primary human islet cells exposed to endoplasmic reticulum and inflammatory stress. Through comprehensive pair-wise analysis of stress responses across pancreatic endocrine and exocrine cell types, we define changes in gene expression for each cell type under different diabetes-associated stressors. We find that ?-, ?-, and ductal cells have the greatest transcriptional response. We utilize stem cell-derived islets to study islet health through the candidate gene CIB1, which was upregulated under stress in primary human islets. Our findings provide insights into cell type-specific responses to diabetes-associated stress and establish a resource to identify targets for diabetes therapeutics. Endoplasmic reticulum and inflammatory stress are associated with diabetes. Maestas et al. use single-cell sequencing to profile primary human islets under stress and identified tissue and cell-type responses.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0872Lot #:AllLanguage:EnglishProduct Name:CytoView MEAâ„¢ 48-Well Plate, BlackCatalog #:200-0873Lot #:AllLanguage:EnglishProduct Name:CytoView MEAâ„¢ 48-Well Plate, WhiteCatalog #: 200-0872 Lot #: All Language: English Product Name: CytoView MEAâ„¢ 48-Well Plate, Black Catalog #: 200-0873 Lot #: All Language: English Product Name: CytoView MEAâ„¢ 48-Well Plate, White Reference(Feb 2024) Cell Reports 43 2The HIF transcription network exerts innate antiviral activity in neurons and limits brain inflammation
SummaryPattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells. Importantly, HIF activation leads to control of HSV replication. Mechanistically, HIF activation induces autophagy, which is essential for antiviral activity. HSV-2 infection in vivo leads to hypoxia in CNS neurons, and mice with neuron-specific HIF1/2? deficiency exhibit elevated viral load and augmented PRR signaling and inflammatory gene expression in the CNS after HSV-2 infection. Data from human stem cell-derived neuron and microglia cultures show that HIF also exerts antiviral and inflammation-restricting activity in human CNS cells. Collectively, the HIF transcription factor system senses virus-induced hypoxic stress to induce cell-intrinsic antiviral responses and limit inflammation. Graphical abstract Highlights•HSV-1 and -2 disrupt the hypoxia-inducible factor (HIF) network in permissive cells•HIF activation induces autophagy, which exerts anti-HSV activity in neurons•Neuronal HIF activation regulates infection and inflammation in the infected brain Using transcriptome analysis of disrupted transcripts in herpes simplex virus-infected cells, Farahani et al. identify the hypoxia-inducible factor gene network to possess antiviral activity through induction of autophagy. This contributes to antiviral defense and regulation of inflammation during infection in the CNS.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 34811 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 34811 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0874Lot #:AllLanguage:EnglishProduct Name:CytoView MEAâ„¢ 24-Well Plate, WhiteCatalog #: 200-0874 Lot #: All Language: English Product Name: CytoView MEAâ„¢ 24-Well Plate, White Reference(Feb 2024) Disease Models & Mechanisms 17 2PTCH1-mutant human cerebellar organoids exhibit altered neural development and recapitulate early medulloblastoma tumorigenesis
ABSTRACTPatched 1 (PTCH1) is the primary receptor for the sonic hedgehog (SHH) ligand and negatively regulates SHH signalling, an essential pathway in human embryogenesis. Loss-of-function mutations in PTCH1 are associated with altered neuronal development and the malignant brain tumour medulloblastoma. As a result of differences between murine and human development, molecular and cellular perturbations that arise from human PTCH1 mutations remain poorly understood. Here, we used cerebellar organoids differentiated from human induced pluripotent stem cells combined with CRISPR/Cas9 gene editing to investigate the earliest molecular and cellular consequences of PTCH1 mutations on human cerebellar development. Our findings demonstrate that developmental mechanisms in cerebellar organoids reflect in vivo processes of regionalisation and SHH signalling, and offer new insights into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models. Summary: Cerebellar organoids recapitulate in vivo processes of regionalisation and SHH signalling, and offer new insight into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 05230 STEMdiffâ„¢ Trilineage Differentiation Kit Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05230 Product Name: STEMdiffâ„¢ Trilineage Differentiation Kit Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0877Lot #:AllLanguage:EnglishProduct Name:BioCircuit MEAâ„¢ 96-Well PlateCatalog #: 200-0877 Lot #: All Language: English Product Name: BioCircuit MEAâ„¢ 96-Well Plate Reference(Aug 2024) Stem Cell Reports 19 8Cell size regulates human endoderm specification through actomyosin-dependent AMOT-YAP signaling
SummaryCell size is a crucial physical property that significantly impacts cellular physiology and function. However, the influence of cell size on stem cell specification remains largely unknown. Here, we investigated the dynamic changes in cell size during the differentiation of human pluripotent stem cells into definitive endoderm (DE). Interestingly, cell size exhibited a gradual decrease as DE differentiation progressed with higher stiffness. Furthermore, the application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced DE differentiation. By functionally intervening in mechanosensitive elements, we have identified actomyosin activity as a crucial mediator of both DE differentiation and cell size reduction. Mechanistically, the reduction in cell size induces actomyosin-dependent angiomotin (AMOT) nuclear translocation, which suppresses Yes-associated protein (YAP) activity and thus facilitates DE differentiation. Together, our study has established a novel connection between cell size diminution and DE differentiation, which is mediated by AMOT nuclear translocation. Additionally, our findings suggest that the application of osmotic pressure can effectively promote human endodermal lineage differentiation. Graphical abstract Highlights•Cell size decreases during the differentiation of human pluripotent stem cells into endoderm•Hypertonic pressure is conducive to the differentiation of human definitive endoderm•Actomyosin contributes to both size diminution and endoderm promotion under hypertonic pressure•Cell size diminution represses YAP activity via promoting AMOT nuclear translocation Jiang and colleagues show that cell size exhibits a gradual decrease during human endoderm differentiation. The application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced endoderm differentiation. This enhancement is reliant on actomyosin activity and achieved by promoting the nuclear translocation of AMOT, thereby repressing YAP activity.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0878Lot #:AllLanguage:EnglishProduct Name:BioCircuit MEAâ„¢ 48-Well PlateCatalog #: 200-0878 Lot #: All Language: English Product Name: BioCircuit MEAâ„¢ 48-Well Plate Reference(Sep 2024) International Journal of Molecular Sciences 25 17From iPSCs to Pancreatic ? Cells: Unveiling Molecular Pathways and Enhancements with Vitamin C and Retinoic Acid in Diabetes Research
Diabetes mellitus, a chronic and non-transmissible disease, triggers a wide range of micro- and macrovascular complications. The differentiation of pancreatic ?-like cells (P?LCs) from induced pluripotent stem cells (iPSCs) offers a promising avenue for regenerative medicine aimed at treating diabetes. Current differentiation protocols strive to emulate pancreatic embryonic development by utilizing cytokines and small molecules at specific doses to activate and inhibit distinct molecular signaling pathways, directing the differentiation of iPSCs into pancreatic ? cells. Despite significant progress and improved protocols, the full spectrum of molecular signaling pathways governing pancreatic development and the physiological characteristics of the differentiated cells are not yet fully understood. Here, we report a specific combination of cofactors and small molecules that successfully differentiate iPSCs into P?LCs. Our protocol has shown to be effective, with the resulting cells exhibiting key functional properties of pancreatic ? cells, including the expression of crucial molecular markers (pdx1, nkx6.1, ngn3) and the capability to secrete insulin in response to glucose. Furthermore, the addition of vitamin C and retinoic acid in the final stages of differentiation led to the overexpression of specific ? cell genes.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Safety Data SheetCatalog #: Product Name: 100-0483 ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 100-0483 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Items 1741 to 1752 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.