Product Information
Items 1765 to 1776 of 13914 total
- Reference(Sep 2024) Nature Cardiovascular Research 3 10
Evolution of translational control and the emergence of genes and open reading frames in human and non-human primate hearts
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease. Ruiz-Orera et al. used comparative transcriptomics and translatomics to analyze the cardiac evolution in primates and discovered species-specific and lineage-specific genomic innovations that might contribute to cardiac development and disease.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-1578Lot #:AllLanguage:EnglishProduct Name:Anti-Human CD38 Antibody, Clone AT-1, FITCCatalog #: 100-1578 Lot #: All Language: English Product Name: Anti-Human CD38 Antibody, Clone AT-1, FITC Reference(Apr 2024) Nature Communications 15Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons
An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro. Connecting cerebral organoids with an axon bundle models inter-regional projections and enhances neural activity. Optogenetic stimulation induces short-term plasticity, offering insights into macroscopic circuit development and functionality.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 100-0276 mTeSRâ„¢ Plus 05791 BrainPhysâ„¢ Without Phenol Red Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Catalog #: 05791 Product Name: BrainPhysâ„¢ Without Phenol Red Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-1577Lot #:AllLanguage:EnglishProduct Name:Anti-Human CD36 Antibody, Clone FA6-152, FITCCatalog #: 100-1577 Lot #: All Language: English Product Name: Anti-Human CD36 Antibody, Clone FA6-152, FITC Reference(Oct 2024) bioRxiv 3 4GATA1-deficient human pluripotent stem cells generate neutrophils with improved antifungal immunity that is mediated by the integrin CD18
Neutrophils are critical for host defense against fungi. However, the short life span and lack of genetic tractability of primary human neutrophils has limited in vitro analysis of neutrophil-fungal interactions. Human induced pluripotent stem cell (iPSC)-derived neutrophils (iNeutrophils) are a genetically tractable alternative to primary human neutrophils. Here, we show that deletion of the transcription factor GATA1 from human iPSCs results in iNeutrophils with improved antifungal activity against Aspergillus fumigatus. GATA1 knockout (KO) iNeutrophils have increased maturation, antifungal pattern recognition receptor expression and more readily execute neutrophil effector functions compared to wild-type iNeutrophils. iNeutrophils also show a shift in their metabolism following stimulation with fungal ?-glucan, including an upregulation of the pentose phosphate pathway (PPP), similar to primary human neutrophils in vitro. Furthermore, we show that deletion of the integrin CD18 attenuates the ability of GATA1-KO iNeutrophils to kill A. fumigatus but is not necessary for the upregulation of PPP. Collectively, these findings support iNeutrophils as a robust system to study human neutrophil antifungal immunity and has identified specific roles for CD18 in the defense response. Author SummaryNeutrophils are important first responders to fungal infections, and understanding their antifungal functions is essential to better elucidating disease dynamics. Primary human neutrophils are short lived and do not permit genetic manipulation, limiting their use to study neutrophil-fungal interactions in vitro. Human induced pluripotent stem cell (iPSC)-derived neutrophils (iNeutrophils) are a genetically tractable alternative to primary human neutrophils for in vitro analyses. In this report we show that GATA1-deficient iPSCs generate neutrophils (iNeutrophils) that are more mature than wild-type iNeutrophils and display increased antifungal activity against the human fungal pathogen Aspergillus fumigatus. We also show that GATA1-deficient iNeutrophils have increased expression of antifungal receptors than wild-type cells and shift their metabolism and execute neutrophil antifungal functions at levels comparable to primary human neutrophils. Deletion of the integrin CD18 blocks the ability of GATA1-deficient iNeutrophils to kill and control the growth of A. fumigatus, demonstrating an important role for this integrin in iNeutrophil antifungal activity. Collectively, these findings support the use of iNeutrophils as a model to study neutrophil antifungal immunity.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM 09605 StemSpanâ„¢ SFEM II 100-0276 mTeSRâ„¢ Plus 05990 °Õ±ð³§¸éâ„¢-·¡8â„¢ Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM Catalog #: 09605 Product Name: StemSpanâ„¢ SFEM II Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Catalog #: 05990 Product Name: °Õ±ð³§¸éâ„¢-·¡8â„¢ Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-1576Lot #:AllLanguage:EnglishProduct Name:Anti-Mouse EPCR Antibody, Clone RMEPCR1560 (1560), FITCCatalog #: 100-1576 Lot #: All Language: English Product Name: Anti-Mouse EPCR Antibody, Clone RMEPCR1560 (1560), FITC Reference(May 2024) Cell reports 43 5Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming
SUMMARY During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent. In brief Martinez-Sarmiento et al. demonstrate that, during heterokaryon reprogramming, global chromatin decondensation and loss of repressive histone modifications occur at late stages after cell fusion. Activation of OCT4 precedes global chromatin decompaction and does not require the opening of its local genomic region. Conversely, NANOG activation occurs after OCT4 activation, and the NANOG locus undergoes opening prior to its transcriptional activation. Graphical AbstractCatalog #: Product Name: 100-0276 mTeSRâ„¢ Plus Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-1575Lot #:AllLanguage:EnglishProduct Name:Anti-Dextran Antibody, Clone DX1, FITCCatalog #: 100-1575 Lot #: All Language: English Product Name: Anti-Dextran Antibody, Clone DX1, FITC Reference(Sep 2024) Nature Communications 15Multiplex, single-cell CRISPRa screening for cell type specific regulatory elements
CRISPR-based gene activation (CRISPRa) is a strategy for upregulating gene expression by targeting promoters or enhancers in a tissue/cell-type specific manner. Here, we describe an experimental framework that combines highly multiplexed perturbations with single-cell RNA sequencing (sc-RNA-seq) to identify cell-type-specific, CRISPRa-responsive cis-regulatory elements and the gene(s) they regulate. Random combinations of many gRNAs are introduced to each of many cells, which are then profiled and partitioned into test and control groups to test for effect(s) of CRISPRa perturbations of both enhancers and promoters on the expression of neighboring genes. Applying this method to a library of 493 gRNAs targeting candidate cis-regulatory elements in both K562 cells and iPSC-derived excitatory neurons, we identify gRNAs capable of specifically upregulating intended target genes and no other neighboring genes within 1?Mb, including gRNAs yielding upregulation of six autism spectrum disorder (ASD) and neurodevelopmental disorder (NDD) risk genes in neurons. A consistent pattern is that the responsiveness of individual enhancers to CRISPRa is restricted by cell type, implying a dependency on either chromatin landscape and/or additional trans-acting factors for successful gene activation. The approach outlined here may facilitate large-scale screens for gRNAs that activate genes in a cell type-specific manner. Scalable CRISPRa screening of cis-regulatory elements in non-cancer cell lines has proved challenging. Here, the authors describe a scalable, CRISPR activation screening framework to identify regulatory element-gene pairs in diverse cell types including cancer cells and neurons.Catalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-1574Lot #:AllLanguage:EnglishProduct Name:Anti-Human CD32 Antibody, Clone IV.3, FITCCatalog #: 100-1574 Lot #: All Language: English Product Name: Anti-Human CD32 Antibody, Clone IV.3, FITC Reference(Apr 2025) International Journal of Molecular Sciences 26 7Ex Vivo Plasma Application on Human Brain Microvascular Endothelial-like Cells for Blood–Brain Barrier Modeling
hiPSC-derived blood–brain barrier (BBB) models are valuable for pharmacological and physiological studies, yet their translational potential is limited due to insufficient cell phenotypes and the neglection of the complex environment of the BBB. This study evaluates the plasma compatibility with hiPSC-derived microvascular endothelial-like cells to enhance the translational potential of in vitro BBB models. Therefore, plasma samples (sodium/lithium heparin, citrate, EDTA) and serum from healthy donors were tested on hiPSC-derived microvascular endothelial-like cells at concentrations of 100%, 75%, and 50%. After 24 h, cell viability parameters were assessed. The impact of heparin-anticoagulated plasmas was further evaluated regarding barrier function and endothelial phenotype of differentiated endothelial-like cells. Finally, sodium-heparin plasma was tested in an isogenic triple-culture BBB model with continuous TEER measurements for 72 h. Only the application of heparin-anticoagulated plasmas did not significantly alter viability parameters compared to medium. Furthermore, heparin plasmas improved barrier function without increasing cell density and induced a von Willebrand factor signal. Finally, continuous TEER measurements of the triple-culture model confirmed the positive impact of sodium-heparin plasma on barrier function. Consequently, heparin-anticoagulated plasmas were proven to be compatible with hiPSC-derived microvascular endothelial-like cells. Thereby, the translational potential of BBB models can be substantially improved in the future.Catalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0825Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Mononuclear Cells, VasculitisCatalog #:200-0840Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Mononuclear Cells, VasculitisCatalog #: 200-0825 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Mononuclear Cells, Vasculitis Catalog #: 200-0840 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Mononuclear Cells, Vasculitis Items 1765 to 1776 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.