Product Information
Items 1633 to 1644 of 13914 total
- Reference(Apr 2025) Nature Communications 16
Dysregulation of N-terminal acetylation causes cardiac arrhythmia and cardiomyopathy
N-terminal acetyltransferases including NAA10 catalyze N-terminal acetylation, an evolutionarily conserved co- and post-translational modification. However, little is known about the role of N-terminal acetylation in cardiac homeostasis. To gain insight into cardiac-dependent NAA10 function, we studied a previously unidentified NAA10 variant p.(Arg4Ser) segregating with QT-prolongation, cardiomyopathy, and developmental delay in a large kindred. Here, we show that the NAA10R4S variant reduced enzymatic activity, decreased NAA10-NAA15 complex formation, and destabilized the enzymatic complex N-terminal acetyltransferase A. In NAA10R4S/Y-induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs), dysregulation of the late sodium and slow delayed rectifier potassium currents caused severe repolarization abnormalities, consistent with clinical QT prolongation. Engineered heart tissues generated from NAA10R4S/Y-iPSC-CMs had significantly decreased contractile force and sarcomeric disorganization, consistent with the pedigree’s cardiomyopathic phenotype. Proteomic studies revealed dysregulation of metabolic pathways and cardiac structural proteins. We identified small molecule and genetic therapies that normalized the phenotype of NAA10R4S/Y-iPSC-CMs. Our study defines the roles of N-terminal acetylation in cardiac regulation and delineates mechanisms underlying QT prolongation, arrhythmia, and cardiomyopathy caused by NAA10 dysfunction. N-terminal acetylation dysregulation in the heart causes severe arrhythmia and cardiomyopathy. The authors show that stem cell models demonstrate ion channel trafficking defects and sarcomeric disarray as the underlying mechanisms, with gene therapy reversing both phenotypesCatalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Reference(Apr 2025) European Journal of Immunology 55 4Monocyte?Platelet Aggregates Are Major Source of BDNF after Bacterial Stimulation of Human Peripheral Blood Immune Cells
ABSTRACTThe gut microbiota and the immune system are closely connected, influencing early?life brain development. Brain?derived neurotrophic factor (BDNF), crucial for neuronal development, has been demonstrated to be produced by certain immune cells. However, the modulation of BDNF during bacterial antigen and metabolite challenge remains elusive. We investigate the effects of bacterial?derived antigens and metabolites on BDNF secretion in human PBMCs. Although BDNF levels were altered during stimulation, a specific cellular origin of BDNF within PBMCs was indeterminate. Positive magnetic separation of monocytes eliminated both the stimulant?induced BDNF secretion and reduced monocyte?platelet aggregates. Conversely, elevated platelet counts significantly increased BDNF levels, indicating that platelets, when interacting with monocytes and exposed to bacterial antigens, are likely the dominant source of BDNF in PBMC cultures. As previously described, platelets are a crucial source of circulating peripheral blood BDNF. Our findings emphasize the importance of the interplay between immune?blood cell complexes during microbial stimulation in regulating BDNF levels. This highlights the necessity of investigating such interactions to better understand the early?life gut?brain axis. Bacterial antigens primarily induce BDNF release from platelets interacting with monocytes in PBMCs. This interplay underscores how immune?blood cell complexes shape BDNF levels which may impact early human development.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 100-0276 mTeSRâ„¢ Plus Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Product Information SheetProduct Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0800Lot #:AllLanguage:EnglishProduct Name:STEMprepâ„¢ Sample TubesCatalog #: 200-0800 Lot #: All Language: English Product Name: STEMprepâ„¢ Sample Tubes Reference(Jul 2025) PLOS One 20 7Incorporation of iPSCs together with TERT-immortalized keratinocytes and fibroblasts into reconstructed human gingiva enhances phenotype of gingival epithelium
The oral mucosa plays an important role in maintaining oral and systemic health by protecting the body from harmful environmental stimuli and pathogens. Current reconstructed human gingiva models (RhG) serve as valuable testing platforms for safety and efficacy testing of dental materials, however they lack important phenotypic characteristics typical of the gingival epithelium. We aimed to determine whether incorporating induced pluripotent stem cells (iPSCs) into the hydrogel of a cell-line RhG (reconstructed epithelium on fibroblast-populated-hydrogel) would improve its phenotype. Immortalized human gingival fibroblasts were resuspended with and without iPSCs in collagen-fibrin hydrogels and gingival keratinocytes were seeded on top of the hydrogels to construct RhGs. RhGs were cultured at air-liquid interface for 1, 2, 4 and 6 weeks and extensively characterized by immunohistochemistry. In situ hybridization for X and Y chromosomes was conducted to identify female iPSCs and male fibroblasts in the RhGs. iPSC-RhGs showed increased epithelial thickening, rete ridge formation, increased cell proliferation and normalized expression of differentiation markers (keratins, involucrin, loricrin, SKALP/elafin) compared to standard RhGs, resulting in an epithelial phenotype very similar to the native gingiva. An increase in apoptotic cells was detected in iPSC-RhGs after 1 week air-exposed culture, and no iPSCs were detected in the hydrogels after 2 weeks air-exposed culture. The increase in apoptotic iPSCs after 1 week air-exposed culture correlated with an increase in keratinocyte proliferation responsible for the superior phenotype observed at 2 weeks.Catalog #: Product Name: 100-0276 mTeSRâ„¢ Plus Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-2130Lot #:AllLanguage:EnglishProduct Name:STEMprepâ„¢ Mouse Brain Dissociation KitCatalog #: 100-2130 Lot #: All Language: English Product Name: STEMprepâ„¢ Mouse Brain Dissociation Kit Reference(May 2024) Journal of Neuroinflammation 21CCR5-overexpressing mesenchymal stem cells protect against experimental autoimmune uveitis: insights from single-cell transcriptome analysis
Autoimmune uveitis is a leading cause of severe vision loss, and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq, RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU), revealing that EAU causes broad retinal neuron degeneration and marker downregulation, and that Müller glia may act as antigen-presenting cells. Moreover, EAU immune response is primarily driven by Th1 cells, and results in dramatic upregulation of CC chemokines, especially CCL5, in the EAU retina. Accordingly, overexpression of CCR5, a CCL5 receptor, in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU, by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together, our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12974-024-03134-3.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 05445 MesenCultâ„¢-ACF Plus Medium Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05445 Product Name: MesenCultâ„¢-ACF Plus Medium Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-2137Lot #:AllLanguage:EnglishProduct Name:STEMprepâ„¢ Mouse Tumor Dissociation KitCatalog #: 100-2137 Lot #: All Language: English Product Name: STEMprepâ„¢ Mouse Tumor Dissociation Kit Reference(Jul 2024) STAR Protocols 5 3Protocol for establishing inducible CRISPR interference system for multiple-gene silencing in human pluripotent stem cells
SummaryInducible loss-of-function strategies are crucial for understanding gene function. However, creating inducible, multiple-gene knockout models is challenging and time-consuming. Here, we present a protocol for establishing a doxycycline-inducible CRISPR interference (CRISPRi) system to concurrently silence multiple genes in human induced pluripotent stem cells (hPSCs). We describe the steps for establishing host CRISPRi hPSCs, designing and cloning single-guide RNAs (sgRNAs) into a lentivirus plasmid, and establishing monoclonal CRISPRi hPSC lines transduced with sgRNAs. We also detail the procedures for selecting effective CRISPRi clones.For complete details on the use and execution of this protocol, please refer to Matsui et al.1 Graphical abstract Highlights•Dox-inducible CRISPRi system to silence multiple genes concurrently•Instructions for generating CRISPRi hPSCs transduced with four sgRNAs•FOXA1/A2/A3-CRISPRi system represses expression of all three FOXA genes by 95% Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Inducible loss-of-function strategies are crucial for understanding gene function. However, creating inducible, multiple-gene knockout models is challenging and time-consuming. Here, we present a protocol for establishing a doxycycline-inducible CRISPR interference (CRISPRi) system to concurrently silence multiple genes in human induced pluripotent stem cells (hPSCs). We describe the steps for establishing host CRISPRi hPSCs, designing and cloning single-guide RNAs (sgRNAs) into a lentivirus plasmid, and establishing monoclonal CRISPRi hPSC lines transduced with sgRNAs. We also detail the procedures for selecting effective CRISPRi clones.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-2136Lot #:AllLanguage:EnglishProduct Name:STEMprepâ„¢ Mouse Liver Dissociation KitCatalog #: 100-2136 Lot #: All Language: English Product Name: STEMprepâ„¢ Mouse Liver Dissociation Kit Reference(Oct 2024) Pharmaceutics 16 10A Human Brain-Chip for Modeling Brain Pathologies and Screening Blood–Brain Barrier Crossing Therapeutic Strategies
Background/Objectives: The limited translatability of preclinical experimental findings to patients remains an obstacle for successful treatment of brain diseases. Relevant models to elucidate mechanisms behind brain pathogenesis, including cell-specific contributions and cell-cell interactions, and support successful targeting and prediction of drug responses in humans are urgently needed, given the species differences in brain and blood-brain barrier (BBB) functions. Human microphysiological systems (MPS), such as Organ-Chips, are emerging as a promising approach to address these challenges. Here, we examined and advanced a Brain-Chip that recapitulates aspects of the human cortical parenchyma and the BBB in one model. Methods: We utilized human primary astrocytes and pericytes, human induced pluripotent stem cell (hiPSC)-derived cortical neurons, and hiPSC-derived brain microvascular endothelial-like cells and included for the first time on-chip hiPSC-derived microglia. Results: Using Tumor necrosis factor alpha (TNF?) to emulate neuroinflammation, we demonstrate that our model recapitulates in vivo-relevant responses. Importantly, we show microglia-derived responses, highlighting the Brain-Chip’s sensitivity to capture cell-specific contributions in human disease-associated pathology. We then tested BBB crossing of human transferrin receptor antibodies and conjugated adeno-associated viruses. We demonstrate successful in vitro/in vivo correlation in identifying crossing differences, underscoring the model’s capacity as a screening platform for BBB crossing therapeutic strategies and ability to predict in vivo responses. Conclusions: These findings highlight the potential of the Brain-Chip as a reliable and time-efficient model to support therapeutic development and provide mechanistic insights into brain diseases, adding to the growing evidence supporting the value of MPS in translational research and drug discovery.Catalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-2135Lot #:AllLanguage:EnglishProduct Name:STEMprep™ Mouse Lung Dissociation KitCatalog #: 100-2135 Lot #: All Language: English Product Name: STEMprep™ Mouse Lung Dissociation Kit Items 1633 to 1644 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.