Product Information
Items 1609 to 1620 of 13914 total
- Reference(Jun 2025) Stem Cell Reports 20 7
APOE4 impacts cortical neurodevelopment and alters network formation in human brain organoids
SummaryApolipoprotein E4 (APOE4) is the leading genetic risk factor for Alzheimer’s disease. While most studies examine the role of APOE4 in aging, APOE4 causes persistent changes in brain structure as early as infancy and is associated with altered functional connectivity that extends beyond adolescence. Here, we used human induced pluripotent stem cell-derived cortical and ganglionic eminence organoids (COs and GEOs) to examine APOE4’s influence during the development of cortical excitatory and inhibitory neurons. We show that APOE4 reduces cortical neurons and increases glia by promoting gliogenic transcriptional programs. In contrast, APOE4 increases proliferation and differentiation of GABAergic progenitors resulting in early and persistent increases in GABAergic neurons. Multi-electrode array recordings in assembloids revealed that APOE4 disrupts neural network function resulting in heightened excitability and synchronicity. Together, our data provide new insights on how APOE4 influences cortical neurodevelopmental processes and the establishment of functional networks. Highlights•APOE4 accelerates differentiation and maturation at developmental time points•APOE4 results in a loss of cortical neurons and increase in astrocytes and outer radial glia•APOE4 enhances proliferation, differentiation, and maturation of GABAergic neurons•APOE4 alters GABA-related genes, linked to increased GABA response and synchronicity Meyer-Acosta et al. reveal that Alzheimer’s disease genetic risk factor APOE4 decreases cortical neurons and increases glia in cortical organoids and enhances GABAergic neuron maturation in ganglionic eminence organoids derived from iPSCs. These cellular changes result in heightened excitability and synchronicity in APOE4-fused organoids, providing insight into the cellular processes that may underlie altered brain structure observed in APOE4 infants.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-2204Lot #:AllLanguage:EnglishProduct Name:EasySepâ„¢ Magnet (Used)Catalog #: 100-2204 Lot #: All Language: English Product Name: EasySepâ„¢ Magnet (Used) Reference(Apr 2024) bioRxiv 12IS-PRM-based peptide targeting informed by long-read sequencing for alternative proteome detection
Alternative splicing is a major contributor of transcriptomic complexity, but the extent to which transcript isoforms are translated into stable, functional protein isoforms is unclear. Furthermore, detection of relatively scarce isoform-specific peptides is challenging, with many protein isoforms remaining uncharted due to technical limitations. Recently, a family of advanced targeted MS strategies, termed internal standard parallel reaction monitoring (IS-PRM), have demonstrated multiplexed, sensitive detection of pre-defined peptides of interest. Such approaches have not yet been used to confirm existence of novel peptides. Here, we present a targeted proteogenomic approach that leverages sample-matched long-read RNA sequencing (LR RNAseq) data to predict potential protein isoforms with prior transcript evidence. Predicted tryptic isoform-specific peptides, which are specific to individual gene product isoforms, serve as “triggers†and “targets†in the IS-PRM method, Tomahto. Using the model human stem cell line WTC11, LR RNAseq data were generated and used to inform the generation of synthetic standards for 192 isoform-specific peptides (114 isoforms from 55 genes). These synthetic “trigger†peptides were labeled with super heavy tandem mass tags (TMT) and spiked into TMT-labeled WTC11 tryptic digest, predicted to contain corresponding endogenous “target†peptides. Compared to DDA mode, Tomahto increased detectability of isoforms by 3.6-fold, resulting in the identification of five previously unannotated isoforms. Our method detected protein isoform expression for 43 out of 55 genes corresponding to 54 resolved isoforms. This LR RNA seq-informed Tomahto targeted approach, called LRP-IS-PRM, is a new modality for generating protein-level evidence of alternative isoforms – a critical first step in designing functional studies and eventually clinical assays.Catalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-2203Lot #:AllLanguage:EnglishProduct Name:"The Big Easy" EasySep™ Magnet (Used)Catalog #: 100-2203 Lot #: All Language: English Product Name: "The Big Easy" EasySep™ Magnet (Used) Reference(May 2025) Genome Medicine 17Combining chromosome conformation capture and exome sequencing for simultaneous detection of structural and single-nucleotide variants
BackgroundEffective molecular diagnosis of congenital diseases hinges on comprehensive genomic analysis, traditionally reliant on various methodologies specific to each variant type—whole exome or genome sequencing for single nucleotide variants (SNVs), array CGH for copy-number variants (CNVs), and microscopy for structural variants (SVs).MethodsWe introduce a novel, integrative approach combining exome sequencing with chromosome conformation capture, termed Exo-C. This method enables the concurrent identification of SNVs in clinically relevant genes and SVs across the genome and allows analysis of heterozygous and mosaic carriers. Enhanced with targeted long-read sequencing, Exo-C evolves into a cost-efficient solution capable of resolving complex SVs at base-pair accuracy.ResultsApplied to 66 human samples Exo-C achieved 100% recall and 73% precision in detecting chromosomal translocations and SNVs. We further benchmarked its performance for inversions and CNVs and demonstrated its utility in detecting mosaic SVs and resolving diagnostically challenging cases.ConclusionsThrough several case studies, we demonstrate how Exo-C’s multifaceted application can effectively uncover diverse causative variants and elucidate disease mechanisms in patients with rare disorders. Supplementary InformationThe online version contains supplementary material available at 10.1186/s13073-025-01471-3.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-2202Lot #:AllLanguage:EnglishProduct Name:Easy 50 EasySepâ„¢ Magnet (Used)Catalog #: 100-2202 Lot #: All Language: English Product Name: Easy 50 EasySepâ„¢ Magnet (Used) Reference(Aug 2025) NPJ Regenerative Medicine 10Supramolecular nanostructure mimics GDNF trophic effects in vitro on human dopaminergic neurons
Peptide-based supramolecular nanostructures offer a versatile platform with substantial promise for clinical translation in regenerative medicine. These systems allow for the incorporation of biologically active sequences and can be engineered to modulate tissue-specific parameters such as stiffness, diffusivity, and biodegradability. We developed here a bioactive supramolecular nanostructure containing a peptide designed based on glial cell-derived neurotrophic factor. These nanostructures form scaffolds that mimic important trophic effects provided by this growth factor on iPSC-derived human dopaminergic neurons. Our in vitro data show that the nanostructures promote cell viability, confer neuroprotection against 6-hydroxydopamine toxicity, enhance neuronal morphology, facilitate electrophysiological maturation, and induce genes involved in neuronal survival. We also found that the scaffold promoted axonal extension in midbrain human organoids. These findings suggest that the supramolecular system could be useful to improve outcomes in cell-based therapies for Parkinson’s disease, where progressive dopaminergic degeneration is a hallmark.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 100-0276 mTeSRâ„¢ Plus Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-2201Lot #:AllLanguage:EnglishProduct Name:EasyPlateâ„¢ EasySepâ„¢ Magnet (Used)Catalog #: 100-2201 Lot #: All Language: English Product Name: EasyPlateâ„¢ EasySepâ„¢ Magnet (Used) Reference(May 2024) Cell Genomics 4 5Variant-to-function analysis of the childhood obesity chr12q13 locus implicates rs7132908 as a causal variant within the 3? UTR of
SummaryThe ch12q13 locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via cis-regulation. We implicated rs7132908 as a putative causal variant by leveraging our in-house 3D genomic data and public domain datasets. Using a luciferase reporter assay, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. We generated isogenic human embryonic stem cell lines homozygous for either rs7132908 allele to assess changes in gene expression and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. The rs7132908 obesity risk allele influenced expression of FAIM2 and other genes and decreased the proportion of neurons produced by differentiation. We have functionally validated rs7132908 as a causal obesity variant that temporally regulates nearby effector genes and influences neurodevelopment and survival. Graphical abstract Highlights•rs7132908 is a causal variant at the chr12q13 obesity locus•rs7132908 regulates nearby effector genes with allele and cell-type specificity•Obesity risk allele decreases generation of neurons that regulate appetite A locus on chr12q13 is strongly associated with childhood obesity by genome-wide associate studies. Littleton et al. identified a causal variant at this locus, which regulates gene expression in neural cell types. The obesity risk allele also decreased the proportion of appetite-regulating hypothalamic neurons generated by stem cell differentiation.Catalog #: Product Name: 05854 ³¾¹ó°ù±ð³§¸éâ„¢ 85850 ³¾°Õ±ð³§¸éâ„¢1 05859 ¹ó°ù±ð³§¸éâ„¢-³§ Catalog #: 05854 Product Name: ³¾¹ó°ù±ð³§¸éâ„¢ Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05859 Product Name: ¹ó°ù±ð³§¸éâ„¢-³§ Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-2200Lot #:AllLanguage:EnglishProduct Name:EasyEightsâ„¢ EasySepâ„¢ Magnet (Used)Catalog #: 100-2200 Lot #: All Language: English Product Name: EasyEightsâ„¢ EasySepâ„¢ Magnet (Used) Reference(Mar 2025) Nucleic Acids Research 53 6Efficient DNA- and virus-free engineering of cellular transcriptomic states using dCas9 ribonucleoprotein (dRNP) complexes
AbstractFor genome editing, the use of CRISPR ribonucleoprotein (RNP) complexes is well established and often the superior choice over plasmid-based or viral strategies. RNPs containing dCas9 fusion proteins, which enable the targeted manipulation of transcriptomes and epigenomes, remain significantly less accessible. Here, we describe the production, delivery, and optimization of second generation CRISPRa RNPs (dRNPs). We characterize the transcriptional and cellular consequences of dRNP treatments in a variety of human target cells and show that the uptake is very efficient. The targeted activation of genes demonstrates remarkable potency, even for genes that are strongly silenced, such as developmental master transcription factors. In contrast to DNA-based CRISPRa strategies, gene activation is immediate and characterized by a sharp temporal precision. We also show that dRNPs allow very high-target multiplexing, enabling undiminished gene activation of multiple genes simultaneously. Applying these insights, we find that intensive target multiplexing at single promoters synergistically elevates gene transcription. Finally, we demonstrate in human stem and differentiated cells that the preferable features of dRNPs allow to instruct and convert cell fates efficiently without the need for DNA delivery or viral vectors. Graphical Abstract Graphical AbstractCatalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetItems 1609 to 1620 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.