Product Information
Items 1453 to 1464 of 13914 total
- Reference(Apr 2024) iScience 27 6
Phagosomal granulocytic ROS in septic patients induce the bacterial SOS response
SummarySeptic patients with worst clinical prognosis have increased circulating immature granulocytes (IG), displaying limited phagocytosis and reactive oxygen species (ROS) production. Here, we developed an ex vivo model of incubation of human granulocytes, from septic patients or healthy donors, with Escherichia coli. We showed that the ROS production in Sepsis-IG is lower due to decreased activation and protein expression of the NADPH oxidase complex. We also demonstrated that the low level of ROS production and lower phagocytosis of IG in sepsis induce the bacterial SOS response, leading to the expression of the SOS-regulated quinolone resistance gene qnrB2. Without antimicrobial pressure, the sepsis immune response alone may promote antibiotic resistance expression. Graphical abstract Highlights•Immature granulocytes in sepsis have decreased phagocytosis and ROS production•SOS response is induced in granulocyte-phagocyted bacteria and is ROS dependent•The level of bacterial SOS induction depends on granulocyte maturation and priming•Phagocyted bacteria induce SOS-dependent quinolone resistance qnrB2 expression Immunology; Microbiology; BacteriologyCatalog #: Product Name: 19666 EasySep™ Direct Human Neutrophil Isolation Kit Catalog #: 19666 Product Name: EasySep™ Direct Human Neutrophil Isolation Kit Reference(May 2024) Journal for Immunotherapy of Cancer 12 5CHMP2A regulates broad immune cell-mediated antitumor activity in an immunocompetent in vivo head and neck squamous cell carcinoma model
BackgroundNatural killer (NK) cells are key effector cells of antitumor immunity. However, tumors can acquire resistance programs to escape NK cell-mediated immunosurveillance. Identifying mechanisms that mediate this resistance enables us to define approaches to improve immune-mediate antitumor activity. In previous studies from our group, a genome-wide CRISPR-Cas9 screen identified Charged Multivesicular Body Protein 2A (CHMP2A) as a novel mechanism that mediates tumor intrinsic resistance to NK cell activity.MethodsHere, we use an immunocompetent mouse model to demonstrate that CHMP2A serves as a targetable regulator of not only NK cell-mediated immunity but also other immune cell populations. Using the recently characterized murine 4MOSC model system, a syngeneic, tobacco-signature murine head and neck squamous cell carcinoma model, we deleted mCHMP2A using CRISPR/Cas9-mediated knock-out (KO), following orthotopic transplantation into immunocompetent hosts.ResultsWe found that mCHMP2A KO in 4MOSC1 cells leads to more potent NK-mediated tumor cell killing in vitro in these tumor cells. Moreover, following orthotopic transplantation, KO of mCHMP2A in 4MOSC1 cells, but not the more immune-resistant 4MOSC2 cells enables both T cells and NK cells to better mediate antitumor activity compared with wild type (WT) tumors. However, there was no difference in tumor development between WT and mCHMP2A KO 4MOSC1 or 4MOSC2 tumors when implanted in immunodeficient mice. Mechanistically, we find that mCHMP2A KO 4MOSC1 tumors transplanted into the immunocompetent mice had significantly increased CD4+T cells, CD8+T cells. NK cell, as well as fewer myeloid-derived suppressor cells (MDSC).ConclusionsTogether, these studies demonstrate that CHMP2A is a targetable inhibitor of cellular antitumor immunity.Catalog #: Product Name: 19855 EasySepâ„¢ Mouse NK Cell Isolation Kit Catalog #: 19855 Product Name: EasySepâ„¢ Mouse NK Cell Isolation Kit Reference(Apr 2024) iScience 27 5The different impact of drug-resistant
SummaryDrug resistance threatens the effective control of infections, including parasitic diseases such as leishmaniases. Neutrophils are essential players in antimicrobial control, but their role in drug-resistant infections is poorly understood. Here, we evaluated human neutrophil response to clinical parasite strains having distinct natural drug susceptibility. We found that Leishmania antimony drug resistance significantly altered the expression of neutrophil genes, some of them transcribed by specific neutrophil subsets. Infection with drug-resistant parasites increased the expression of detoxification pathways and reduced the production of cytokines. Among these, the chemokine CCL3 was predominantly impacted, which resulted in an impaired ability of neutrophils to attract myeloid cells. Moreover, decreased myeloid recruitment when CCL3 levels are reduced was confirmed by blocking CCL3 in a mouse model. Collectively, these findings reveal that the interplay between naturally drug-resistant parasites and neutrophils modulates the infected skin immune microenvironment, revealing a key role of neutrophils in drug resistance. Graphical abstract Highlights•Drug-resistant parasites induce distinct neutrophil transcriptional programs•Meglumine-antimoniate-resistant (MAR) Leishmania limits neutrophil chemokine release•Infection with MAR parasites impairs CCL3-driven early myeloid cell recruitment Immunology; ParasitologyCatalog #: Product Name: 17858 EasySep™ Human CD14 Positive Selection Kit II 17957 EasySep™ Human Neutrophil Isolation Kit Catalog #: 17858 Product Name: EasySep™ Human CD14 Positive Selection Kit II Catalog #: 17957 Product Name: EasySep™ Human Neutrophil Isolation Kit Reference(Apr 2024) iScience 27 5B cell somatic hypermutation following COVID-19 vaccination with Ad26.COV2.S
SummaryThe viral vector-based COVID-19 vaccine Ad26.COV2.S has been recommended by the WHO since 2021 and has been administered to over 200 million people. Prior studies have shown that Ad26.COV2.S induces durable neutralizing antibodies (NAbs) that increase in coverage of variants over time, even in the absence of boosting or infection. Here, we studied humoral responses following Ad26.COV2.S vaccination in individuals enrolled in the initial Phase 1/2a trial of Ad26.COV2.S in 2020. Through 8 months post vaccination, serum NAb responses increased to variants, including B.1.351 (Beta) and B.1.617.2 (Delta), without additional boosting or infection. The level of somatic hypermutation, measured by nucleotide changes in the VDJ region of the heavy and light antibody chains, increased in Spike-specific B cells. Highly mutated mAbs from these sequences neutralized more SARS-CoV-2 variants than less mutated comparators. These findings suggest that the increase in NAb breadth over time following Ad26.COV2.S vaccination is mediated by affinity maturation. Graphical abstract Highlights•Ad26.COV2.S induced neutralizing antibodies increase in breadth over 8 months•Somatic hypermutation in spike specific B cells also increases over 8 months•Highly mutated monoclonal antibodies neutralize more variants than less mutated•Ad26.COV2.S induces long term affinity maturation Health sciences; Immunity; Immune response; VirologyCatalog #: Product Name: 19554 EasySep™ Human Pan-B Cell Enrichment Kit Catalog #: 19554 Product Name: EasySep™ Human Pan-B Cell Enrichment Kit Reference(Mar 2024) Cell Genomics 4 4A noncoding regulatory variant in
SummaryHispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33–1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children. Graphical abstract Highlights•IKZF1 variants contribute to the increased risk of ALL in Hispanic/Latino children•Risk allele is associated with Indigenous American ancestry and underwent selection•Risk variant impacts IKZF1 enhancer that is selectively active in B cell development•Risk allele reduces enhancer activity, chromatin accessibility, and IKZF1 expression Genetic fine-mapping across the IKZF1 gene revealed a variant associated with childhood ALL that contributes to the increased risk of this disease in Hispanic/Latino individuals. The ALL risk allele reduces enhancer activity and IKZF1 expression specifically in B cell progenitors, likely resulting in stalled B cell development and an increased risk of ALL.Catalog #: Product Name: 09600 StemSpan™ SFEM 09605 StemSpan™ SFEM II 15026 RosetteSep™ Human Hematopoietic Progenitor Cell Enrichment Cocktail 17856 EasySep™ Human CD34 Positive Selection Kit II 02690 StemSpan™ CC100 Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09605 Product Name: StemSpan™ SFEM II Catalog #: 15026 Product Name: RosetteSep™ Human Hematopoietic Progenitor Cell Enrichment Cocktail Catalog #: 17856 Product Name: EasySep™ Human CD34 Positive Selection Kit II Catalog #: 02690 Product Name: StemSpan™ CC100 Reference(Apr 2024) Cancer Research Communications 4 4The Cross-talk Between Intestinal Microbiota and MDSCs Fuels Colitis-associated Cancer Development
AbstractIntestinal chronic inflammation is associated with microbial dysbiosis and accumulation of various immune cells including myeloid-derived suppressor cells (MDSC), which profoundly impact the immune microenvironment, perturb homeostasis and increase the risk to develop colitis-associated colorectal cancer (CAC). However, the specific MDSCs–dysbiotic microbiota interactions and their collective impact on CAC development remain poorly understood. In this study, using a murine model of CAC, we demonstrate that CAC-bearing mice exhibit significantly elevated levels of highly immunosuppressive MDSCs, accompanied by microbiota alterations. Both MDSCs and bacteria that infiltrate the colon tissue and developing tumors can be found in close proximity, suggesting intricate MDSC-microbiota cross-talk within the tumor microenvironment. To investigate this phenomenon, we employed antibiotic treatment to disrupt MDSC–microbiota interactions. This intervention yielded a remarkable reduction in intestinal inflammation, decreased MDSC levels, and alleviated immunosuppression, all of which were associated with a significant reduction in tumor burden. Furthermore, we underscore the causative role of dysbiotic microbiota in the predisposition toward tumor development, highlighting their potential as biomarkers for predicting tumor load. We shed light on the intimate MDSCs-microbiota cross-talk, revealing how bacteria enhance MDSC suppressive features and activities, inhibit their differentiation into mature beneficial myeloid cells, and redirect some toward M2 macrophage phenotype. Collectively, this study uncovers the role of MDSC-bacteria cross-talk in impairing immune responses and promoting tumor growth, providing new insights into potential therapeutic strategies for CAC.Significance:MDSCs–dysbiotic bacteria interactions in the intestine play a crucial role in intensifying immunosuppression within the CAC microenvironment, ultimately facilitating tumor growth, highlighting potential therapeutic targets for improving the treatment outcomes of CAC.Catalog #: Product Name: 19851 EasySep™ Mouse T Cell Isolation Kit Catalog #: 19851 Product Name: EasySep™ Mouse T Cell Isolation Kit Reference(Apr 2024) Life Science Alliance 7 6DEFA1A3 DNA gene-dosage regulates the kidney innate immune response during upper urinary tract infection
α-Defensin 1-3 (DEFA1A3) are host antimicrobial peptides with potent innate immune functions during infectious diseases. Differential UTI risk has been linked to DEFA1A3 DNA polymorphisms. This study elucidates mechanisms of DEFA1A3 gene dose–dependent protection against UTI pathogenesis. Antimicrobial peptides (AMPs) are host defense effectors with potent neutralizing and immunomodulatory functions against invasive pathogens. The AMPs α-Defensin 1-3/DEFA1A3 participate in innate immune responses and influence patient outcomes in various diseases. DNA copy-number variations in DEFA1A3 have been associated with severity and outcomes in infectious diseases including urinary tract infections (UTIs). Specifically, children with lower DNA copy numbers were more susceptible to UTIs. The mechanism of action by which α-Defensin 1-3/DEFA1A3 copy-number variations lead to UTI susceptibility remains to be explored. In this study, we use a previously characterized transgenic knock-in of the human DEFA1A3 gene mouse to dissect α-Defensin 1-3 gene dose–dependent antimicrobial and immunomodulatory roles during uropathogenic Escherichia coli (UPEC) UTI. We elucidate the relationship between kidney neutrophil– and collecting duct intercalated cell–derived α-Defensin 1-3/DEFA1A3 expression and UTI. We further describe cooperative effects between α-Defensin 1-3 and other AMPs that potentiate the neutralizing activity against UPEC. Cumulatively, we demonstrate that DEFA1A3 directly protects against UPEC meanwhile impacting pro-inflammatory innate immune responses in a gene dosage–dependent manner.Catalog #: Product Name: 20144 EasySep™ Buffer Catalog #: 20144 Product Name: EasySep™ Buffer Reference(Mar 2024) Research Square 12Rag-GTPase-TFEB/TFE3 axis controls B cell mitochondrial fitness and humoral immunity independent of mTORC1
During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer’s patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 axis as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.Catalog #: Product Name: 19854 EasySep™ Mouse B Cell Isolation Kit Catalog #: 19854 Product Name: EasySep™ Mouse B Cell Isolation Kit Reference(Mar 2024) ImmunoHorizons 8 3Peptidoglycan from
AbstractBacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVβ5, CD36, and TIM-3, whereas TIM-1, αVβ3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.Catalog #: Product Name: 19666 EasySep™ Direct Human Neutrophil Isolation Kit Catalog #: 19666 Product Name: EasySep™ Direct Human Neutrophil Isolation Kit Reference(Apr 2024) The Journal of Experimental Medicine 221 5Helper T cell immunity in humans with inherited CD4 deficiency
This study describes clinical features and cellular and molecular mechanisms underlying immune deficiency in seven patients with biallelic germline variants in CD4. The data reveal important roles for CD4 in host defense against a range of pathogens, particularly human papilloma virus. CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5–61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple’s disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαβ+CD4−CD8− T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4−CD8− αβ T cells exhibit intact responses to HLA class II–restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.Catalog #: Product Name: 10970 ImmunoCultâ„¢ Human CD3/CD28/CD2 T Cell Activator 19674 EasySepâ„¢ Direct Human B Cell Isolation Kit 19654 EasySepâ„¢ Direct Human PBMC Isolation Kit 100-0956 ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó 100-0785 ImmunoCultâ„¢ Human CD3/CD28/CD2 T Cell Activator Catalog #: 10970 Product Name: ImmunoCultâ„¢ Human CD3/CD28/CD2 T Cell Activator Catalog #: 19674 Product Name: EasySepâ„¢ Direct Human B Cell Isolation Kit Catalog #: 19654 Product Name: EasySepâ„¢ Direct Human PBMC Isolation Kit Catalog #: 100-0956 Product Name: ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó Catalog #: 100-0785 Product Name: ImmunoCultâ„¢ Human CD3/CD28/CD2 T Cell Activator Reference(Feb 2024) Cell Reports Medicine 5 3Follicular lymphoma B cells exhibit heterogeneous transcriptional states with associated somatic alterations and tumor microenvironments
SummaryFollicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention. Graphical abstract Highlights•B cells from follicular lymphoma exhibit 3 distinct transcriptional states•FL B cells differ by enhanced inflammation, proliferation, or chromatin remodeling•Tumor cell states correlate with unique immune-microenvironment features•Unique mutation and CNV profiles highlight potential genetic causes of heterogeneity Krull et al. analyzed bulk transcriptional, genomic, and immune profiles of B cells from follicular lymphoma and reveal 3 distinct transcriptional states. These cell states underscore the inherent variability of FL tumors, independent of stroma, and implicate intrinsic differences as an underpinning to FL heterogeneity.Catalog #: Product Name: 17963 EasySep™ Human B Cell Enrichment Kit II Without CD43 Depletion 17864 EasySep™ Human Memory B Cell Isolation Kit Catalog #: 17963 Product Name: EasySep™ Human B Cell Enrichment Kit II Without CD43 Depletion Catalog #: 17864 Product Name: EasySep™ Human Memory B Cell Isolation Kit Reference(Mar 2024) Journal of Biomedical Science 31Association of TRAIL receptor with phosphatase SHP-1 enables repressing T cell receptor signaling and T cell activation through inactivating Lck
BackgroundT cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation.MethodsWhole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells.ResultsTRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation.ConclusionsTRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12929-024-01023-8.Catalog #: Product Name: 19852 EasySepâ„¢ Mouse CD4+ T Cell Isolation Kit Catalog #: 19852 Product Name: EasySepâ„¢ Mouse CD4+ T Cell Isolation Kit Items 1453 to 1464 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.