Product Information
Items 1441 to 1452 of 13914 total
- Reference(Jun 2024) Frontiers in Immunology 15 9
Interleukin-17 directly stimulates tumor infiltrating Tregs to prevent cancer development
BackgroundInterleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses.MethodsWe generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells.ResultsIL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function.ConclusionIL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.Catalog #: Product Name: 19765 EasySep™ Mouse Naïve CD4+ T Cell Isolation Kit Catalog #: 19765 Product Name: EasySep™ Mouse Naïve CD4+ T Cell Isolation Kit Reference(Jun 2024) Genomics, Proteomics & Bioinformatics 22 1Integrated Single-cell Multiomic Analysis of HIV Latency Reversal Reveals Novel Regulators of Viral Reactivation
AbstractDespite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%–79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.Catalog #: Product Name: 17952 EasySep™ Human CD4+ T Cell Isolation Kit Catalog #: 17952 Product Name: EasySep™ Human CD4+ T Cell Isolation Kit Reference(May 2024) Nature Medicine 30 6Multiomic analyses uncover immunological signatures in acute and chronic coronary syndromes
Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. Inflammation is considered a key pathogenic driver of these diseases, but the underlying immune states and their clinical implications remain poorly understood. Multiomic factor analysis (MOFA) allows unsupervised data exploration across multiple data types, identifying major axes of variation and associating these with underlying molecular processes. We hypothesized that applying MOFA to multiomic data obtained from blood might uncover hidden sources of variance and provide pathophysiological insights linked to clinical needs. Here we compile a longitudinal multiomic dataset of the systemic immune landscape in both ACS and CCS (n = 62 patients in total, n = 15 women and n = 47 men) and validate this in an external cohort (n = 55 patients in total, n = 11 women and n = 44 men). MOFA reveals multicellular immune signatures characterized by distinct monocyte, natural killer and T cell substates and immune-communication pathways that explain a large proportion of inter-patient variance. We also identify specific factors that reflect disease state or associate with treatment outcome in ACS as measured using left ventricular ejection fraction. Hence, this study provides proof-of-concept evidence for the ability of MOFA to uncover multicellular immune programs in cardiovascular disease, opening new directions for mechanistic, biomarker and therapeutic studies. Multiomic factor analysis of blood multiomic data, including single-cell transcriptomics, for individuals with either acute or chronic coronary syndrome identifies immune cell signatures that correlate with treatment outcomes.Catalog #: Product Name: 19666 EasySepâ„¢ Direct Human Neutrophil Isolation Kit 18000 EasySepâ„¢ Magnet Catalog #: 19666 Product Name: EasySepâ„¢ Direct Human Neutrophil Isolation Kit Catalog #: 18000 Product Name: EasySepâ„¢ Magnet Reference(May 2024) Nature 630 8017Selective haematological cancer eradication with preserved haematopoiesis
Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies, but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells, as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However, target selection is complex and limited to antigens expressed on subsets of haematopoietic cells, resulting in a fragmented therapy landscape with high development costs2–5. Here we demonstrate that an antibody–drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system, including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system, irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies. An antibody–drug conjugate that targets the pan-haematopoietic marker CD45 combined with transplanted stem cells engineered to be shielded from it can eradicate leukaemic cells while preserving haematopoiesis.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM 09605 StemSpanâ„¢ SFEM II 17951 EasySepâ„¢ Human T Cell Isolation Kit 22000 ³§°Õ·¡²Ñ±¹¾±²õ¾±´Ç²Ôâ„¢ Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM Catalog #: 09605 Product Name: StemSpanâ„¢ SFEM II Catalog #: 17951 Product Name: EasySepâ„¢ Human T Cell Isolation Kit Catalog #: 22000 Product Name: ³§°Õ·¡²Ñ±¹¾±²õ¾±´Ç²Ôâ„¢ Reference(Jun 2024) Communications Biology 7Super-resolution imaging of T lymphocyte activation reveals chromatin decondensation and disrupted nuclear envelope
T lymphocyte activation plays a pivotal role in adaptive immune response and alters the spatial organization of nuclear architecture that subsequently impacts transcription activities. Here, using stochastic optical reconstruction microscopy (STORM), we observe dramatic de-condensation of chromatin and the disruption of nuclear envelope at a nanoscale resolution upon T lymphocyte activation. Super-resolution imaging reveals that such alterations in nuclear architecture are accompanied by the release of nuclear DNA into the cytoplasm, correlating with the degree of chromatin decompaction within the nucleus. The authors show that under the influence of metabolism, T lymphocyte activation de-condenses chromatin, disrupts the nuclear envelope, and releases DNA into the cytoplasm. Taken together, this result provides a direct, molecular-scale insight into the alteration in nuclear architecture. It suggests the release of nuclear DNA into the cytoplasm as a general consequence of chromatin decompaction after lymphocyte activation. The authors show that under the influence of metabolism, T lymphocyte activation de-condenses chromatin, disrupts the nuclear envelope, and releases DNA into the cytoplasm.Catalog #: Product Name: 19851 EasySepâ„¢ Mouse T Cell Isolation Kit 19854 EasySepâ„¢ Mouse B Cell Isolation Kit Catalog #: 19851 Product Name: EasySepâ„¢ Mouse T Cell Isolation Kit Catalog #: 19854 Product Name: EasySepâ„¢ Mouse B Cell Isolation Kit Reference(Jun 2024) Nature Communications 15Cis-regulatory evolution of the recently expanded Ly49 gene family
Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation. Here we systematically profile the epigenome of the recently expanded murine Ly49 gene family that mainly encode either inhibitory or activating surface receptors on natural killer cells. We identify a set of cis-regulatory elements (CREs) for activating Ly49 genes. In addition, we show that in mice, inhibitory and activating Ly49 genes are regulated by two separate sets of proximal CREs, likely resulting from lineage-specific losses of CRE activity. Furthermore, we find that some Ly49 genes are cross-regulated by the CREs of other Ly49 genes, suggesting that the Ly49 family has begun to evolve a concerted cis-regulatory mechanism. Collectively, we demonstrate the different modes of cis-regulatory evolution for a rapidly expanding gene family. The Ly49 gene family mainly encodes inhibitory or activating surface receptors on natural killer cells. Here the authors show that in mice, inhibitory and activating Ly49 genes are regulated by two distinct sets of cis-regulatory elements, and that different Ly49 genes can be cross-regulated.Catalog #: Product Name: 19855 EasySepâ„¢ Mouse NK Cell Isolation Kit Catalog #: 19855 Product Name: EasySepâ„¢ Mouse NK Cell Isolation Kit Reference(May 2024) Nature Microbiology 9 6Peptostreptococcus anaerobius mediates anti-PD1 therapy resistance and exacerbates colorectal cancer via myeloid-derived suppressor cells in mice
Bacteria such as the oral microbiome member Peptostreptococcus anaerobius can exacerbate colorectal cancer (CRC) development. Little is known regarding whether these immunomodulatory bacteria also affect antitumour immune checkpoint blockade therapy. Here we show that administration of P. anaerobius abolished the efficacy of anti-PD1 therapy in mouse models of CRC. P. anaerobius both induced intratumoral myeloid-derived suppressor cells (MDSCs) and stimulated their immunosuppressive activities to impair effective T cell responses. Mechanistically, P. anaerobius administration activated integrin α2β1–NF-κB signalling in CRC cells to induce secretion of CXCL1 and recruit CXCR2+ MDSCs into tumours. The bacterium also directly activated immunosuppressive activity of intratumoral MDSCs by secreting lytC_22, a protein that bound to the Slamf4 receptor on MDSCs and promoted ARG1 and iNOS expression. Finally, therapeutic targeting of either integrin α2β1 or the Slamf4 receptor were revealed as promising strategies to overcome P. anaerobius-mediated resistance to anti-PD1 therapy in CRC. Interactions between Peptostreptococcus anaerobius and host cells promote recruitment and activation of myeloid-derived suppressor cells, leading to anti-PD1 immune checkpoint inhibitor resistance and exacerbated colorectal cancer in mice.Catalog #: Product Name: 19867 EasySep™ Mouse MDSC (CD11b+Gr1+) Isolation Kit Catalog #: 19867 Product Name: EasySep™ Mouse MDSC (CD11b+Gr1+) Isolation Kit Reference(May 2024) Cell Reports Medicine 5 5Therapeutic avenues in bone repair: Harnessing an anabolic osteopeptide, PEPITEM, to boost bone growth and prevent bone loss
SummaryThe existing suite of therapies for bone diseases largely act to prevent further bone loss but fail to stimulate healthy bone formation and repair. We describe an endogenous osteopeptide (PEPITEM) with anabolic osteogenic activity, regulating bone remodeling in health and disease. PEPITEM acts directly on osteoblasts through NCAM-1 signaling to promote their maturation and formation of new bone, leading to enhanced trabecular bone growth and strength. Simultaneously, PEPITEM stimulates an inhibitory paracrine loop: promoting osteoblast release of the decoy receptor osteoprotegerin, which sequesters RANKL, thereby limiting osteoclast activity and bone resorption. In disease models, PEPITEM therapy halts osteoporosis-induced bone loss and arthritis-induced bone damage in mice and stimulates new bone formation in osteoblasts derived from patient samples. Thus, PEPITEM offers an alternative therapeutic option in the management of diseases with excessive bone loss, promoting an endogenous anabolic pathway to induce bone remodeling and redress the imbalance in bone turnover. Graphical abstract Highlights•PEPITEM exerts anabolic osteogenic activity to regulate osteoblast-osteoclast coupling•PEPITEM acts directly on osteoblasts to promote formation of new and stronger bone•PEPITEM stimulates an inhibitory paracrine loop via OPG to limit bone resorption•PEPITEM therapy halts disease-induced bone loss in vivo Lewis and Frost et al. identify the anabolic activity of an endogenous osteopeptide (PEPITEM), revealing the cellular and molecular mechanisms by which PEPITEM regulates bone remodeling in vitro and in preclinical disease models, to promote new bone formation. They suggest that PEPITEM offers an alternative therapeutic option for bone loss diseases.Catalog #: Product Name: 19359 EasySep™ Human Monocyte Isolation Kit Catalog #: 19359 Product Name: EasySep™ Human Monocyte Isolation Kit Reference(May 2024) Cell Reports Medicine 5 5Monocyte bioenergetics: An immunometabolic perspective in metabolic dysfunction-associated steatohepatitis
SummaryMonocytes (Mos) are crucial in the evolution of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH), and immunometabolism studies have recently suggested targeting leukocyte bioenergetics in inflammatory diseases. Here, we reveal a peculiar bioenergetic phenotype in circulating Mos of patients with MASH, characterized by high levels of glycolysis and mitochondrial (mt) respiration. The enhancement of mt respiratory chain activity, especially complex II (succinate dehydrogenase [SDH]), is unbalanced toward the production of reactive oxygen species (ROS) and is sustained at the transcriptional level with the involvement of the AMPK-mTOR-PGC-1α axis. The modulation of mt activity with dimethyl malonate (DMM), an SDH inhibitor, restores the metabolic profile and almost abrogates cytokine production. Analysis of a public single-cell RNA sequencing (scRNA-seq) dataset confirms that in murine models of MASH, liver Mo-derived macrophages exhibit an upregulation of mt and glycolytic energy pathways. Accordingly, the DMM injection in MASH mice contrasts Mo infiltration and macrophagic enrichment, suggesting immunometabolism as a potential target in MASH. Graphical abstract Highlights•Circulating monocytes (Mos) in patients with MASH show a bioenergetic reprogramming•SDH inhibition in vitro restores MASH Mo bioenergetics, abolishing cytokine production•In mice, energy pathways are upregulated in liver Mo-derived macrophages during MASH•SDH inhibition in vivo reduces Mo infiltration and differentiation in MASH Sangineto et al. investigate the bioenergetics and mitochondrial activity of circulating monocytes in patients with MASH, revealing a hypermetabolic state also identified in liver monocyte-derived macrophages through transcriptomic analysis. Immunometabolic modulation via SDH inhibition attenuates inflammation both in vitro and in vivo, ameliorating MASH.Catalog #: Product Name: 17858 EasySep™ Human CD14 Positive Selection Kit II 18000 EasySep™ Magnet 20144 EasySep™ Buffer Catalog #: 17858 Product Name: EasySep™ Human CD14 Positive Selection Kit II Catalog #: 18000 Product Name: EasySep™ Magnet Catalog #: 20144 Product Name: EasySep™ Buffer Reference(May 2024) Frontiers in Immunology 15IFNγ at the early stage induced after cryo-thermal therapy maintains CD4
IntroductionRecently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase.MethodsTo understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated.ResultsIFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1β generation, and thereby further amplifying Th1 response.DiscussionOur finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.Catalog #: Product Name: 18952 EasySep™ Mouse CD4 Positive Selection Kit II 17667 EasySep™ Mouse APC Positive Selection Kit II Catalog #: 18952 Product Name: EasySep™ Mouse CD4 Positive Selection Kit II Catalog #: 17667 Product Name: EasySep™ Mouse APC Positive Selection Kit II Reference(May 2024) Nature Communications 15Small molecule induced STING degradation facilitated by the HECT ligase HERC4
Stimulator of interferon genes (STING) is a central component of the cytosolic nucleic acids sensing pathway and as such master regulator of the type I interferon response. Due to its critical role in physiology and its’ involvement in a variety of diseases, STING has been a focus for drug discovery. Targeted protein degradation (TPD) has emerged as a promising pharmacology for targeting previously considered undruggable proteins by hijacking the cellular ubiquitin proteasome system (UPS) with small molecules. Here, we identify AK59 as a STING degrader leveraging HERC4, a HECT-domain E3 ligase. Additionally, our data reveals that AK59 is effective on the common pathological STING mutations, suggesting a potential clinical application of this mechanism. Thus, these findings introduce HERC4 to the fields of TPD and of compound-induced degradation of STING, suggesting potential therapeutic applications. In this paper, Mutlu et al. identifies a STING degrader, AK59, which inhibits downstream cGAS/STING activity through STING degradation employing a HECT-domain E3 ligase HERC4 and proteasomal ubiquitination pathway.Catalog #: Product Name: 20104 RoboSep™ Buffer Catalog #: 20104 Product Name: RoboSep™ Buffer Reference(May 2024) Nature Communications 15C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer
Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies. PARP inhibitors (PARPi) have been approved for the treatment of metastatic triple-negative breast cancer (BC), however resistance and recurrence are often observed. Here, in preclinical models of BRCA1/2 wild type and homologous recombination competent BC, the authors show that C5aR1-positive tumor associated macrophages are associated with PARPi-resistance, suggesting targeting C5aR1 as a therapeutic option.Catalog #: Product Name: 18970 EasySepâ„¢ Mouse CD11b Positive Selection Kit II 17683 EasySepâ„¢ Biotin Positive Selection Kit II 17899 EasySepâ„¢ Dead Cell Removal (Annexin V) Kit 18945 EasySepâ„¢ Mouse CD45 Positive Selection Kit Catalog #: 18970 Product Name: EasySepâ„¢ Mouse CD11b Positive Selection Kit II Catalog #: 17683 Product Name: EasySepâ„¢ Biotin Positive Selection Kit II Catalog #: 17899 Product Name: EasySepâ„¢ Dead Cell Removal (Annexin V) Kit Catalog #: 18945 Product Name: EasySepâ„¢ Mouse CD45 Positive Selection Kit Items 1441 to 1452 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.