ƽ

STEMdiff™ SMADi Neural Induction Kit

Serum-free medium kit for highly efficient SMAD inhibition-mediated neural induction of human ES and iPS cells

Need a high-quality cell source? Choose from our hiPSC healthy control lines, manufactured with mTeSR™ Plus.

STEMdiff™ SMADi Neural Induction Kit

Serum-free medium kit for highly efficient SMAD inhibition-mediated neural induction of human ES and iPS cells

Catalog #
(Select a product)
Serum-free medium kit for highly efficient SMAD inhibition-mediated neural induction of human ES and iPS cells
Request Pricing Request Pricing

Product Advantages


  • Defined and serum-free

  • Promotes efficient conversion of ES and iPS cells to CNS-type NPCs, and inhibits unwanted differentiation of non-CNS cell types

  • Highly efficient neural induction of even hard-to-differentiate ES and iPS cell lines

  • Improves efficiency of downstream differentiation into neurons and glia

  • Compatible with both embryoid body and monolayer culture protocols for neural induction

  • Enables reproducible differentiation of cell lines maintained in any TeSR™ family maintenance medium

  • Convenient, user-friendly format and protocols

What's Included

STEMdiff™ SMADi Neural Induction Kit (Catalog #08581)
  STEMdiff™ Neural Induction Medium, 250 mL
  STEMdiff™ SMADi Neural Induction Supplement, 0.5 mL
STEMdiff™ SMADi Neural Induction Kit, 2 Pack (Catalog #08582)
  STEMdiff™ Neural Induction Medium, 2 x 250 mL
  STEMdiff™ SMADi Neural Induction Supplement, 2 x 0.5 mL

Overview

STEMdiff™ SMADi Neural Induction Kit consists of a defined, serum-free medium and supplement for the highly efficient neural induction of human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. This kit combines STEMdiff™ Neural Induction Medium (Catalog #05835) with STEMdiff™ SMADi Neural Induction Supplement, which directs differentiation by blocking TGF-β/BMP-dependent SMAD signaling, resulting in efficient neural induction of even hard-to-differentiate cell lines. Neural progenitor cells (NPCs) can be generated using STEMdiff™ SMADi Neural Induction Kit with either an embryoid body (EB) protocol or monolayer culture protocol. The resulting cultures are enriched for central nervous system (CNS)-type NPCs, which express SOX1, Nestin, and PAX6. NPCs generated using this kit can be passaged as single cells and expanded in STEMdiff™ Neural Progenitor Medium (Catalog #05833). The NPCs can also be differentiated into neurons and glia.

Learn how to generate neural progenitor cells from human pluripotent stem cells (hPSCs) in our On-Demand Neural Induction Course, and browse our Tech Tips on the Neural Induction of hPSCs using the Embryoid Body Method or Monolayer Method.
Subtype
Specialized Media
Cell Type
Neural Cells, PSC-Derived, Pluripotent Stem Cells
Application
Differentiation
Brand
STEMdiff
Area of Interest
Disease Modeling, Drug Discovery and Toxicity Testing, Neuroscience, Stem Cell Biology
Formulation Category
Serum-Free

More Information

More Information
Safety Statement

CA WARNING: This product can expose you to chemicals including Nickel Compounds which are known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to

Data Figures

Figure 1. STEMdiff™ SMADi Neural Induction Kit Supports Generation of Neural Progenitor Cells with High Levels of PAX6 and SOX1 Expression.

Neural progenitor cells (NPCs) can be generated from hPSCs cultured in mTeSR™1 or TeSR™-E8™ via embryoid body or monolayer protocol using the STEMdiff™ SMADi Neural Induction Kit. Resulting NPCs express CNS-type NPC markers PAX6 and SOX1.

Figure 2. STEMdiff™ SMADi Neural Induction Kit Supports Robust Neural Progenitor Cell Generation Across Multiple hPSC Lines.

Multiple human ES and iPS lines (cultured in mTeSR™1 or TeSR™-E8™) were subjected to the monolayer neural induction protocol. Cells were harvested after 7 days in culture and processed for immunostaining with PAX6, SOX1 and SOX10 antibodies. Cultures were imaged and quantified using the high content imager ImageXpress Micro, which counts positive nuclei across the entirety of the culture well. n=3 replicates per cell line. Data showed that neural progenitor cells produced using the STEMdiff™ SMADi Neural Induction Kit expressed very high levels of CNS-type markers PAX6 and SOX1, while the neural crest marker SOX10 was low to undetectable.

Figure 3. Neural Progenitor Cells Produced Using the Stemdiff™ SMADi Neural Induction Kit Support Highly Efficient Downstream Differentiation Into Neurons and Astrocytes.

Starting hPSCs were maintained in mTeSR™1 and differentiated using an embryoid body (EB) protocol. Resulting cells were differentiated using the STEMdiff™ Neuron Differentiation/Maturation Kits, STEMdiff™ Astrocyte Differentiation/Maturation Kits, and STEMdiff™ Dopaminergic Neuron Differentiation/Maturation Kits as per the respective protocols.

Cell morphology images of neural progenitor cells maintained in mTeSR™1 or mTeSR™ Plus. Arrowheads point to clearly displayed neural rosettes after replating embryoid bodies.

Figure 4. Generation of Neural Progenitor Cells from hPSCs Maintained in mTeSR™ Plus

Human ES (H9) and iPS (STiPS-M001) cells were maintained in (A) mTeSR™1 with daily feeds or (B) mTeSR™ Plus with restricted feeds and differentiated using an embryoid body (EB)-based protocol with STEMdiff™ SMADi Neural Induction Kit. Neural progenitor cells derived from hPSCs maintained in either mTeSR™1 or mTeSR™ Plus clearly display neural rosettes (arrowheads) after replating EBs.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
08581
Lot #
All
Language
English
Document Type
Product Name
Catalog #
08582
Lot #
All
Language
English
Document Type
Product Name
Catalog #
08581
Lot #
All
Language
English
Document Type
Product Name
Catalog #
08581
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Educational Materials (29)

Brochure
Brochure
Brochure
Scientific Poster
Scientific Poster
Scientific Poster
Scientific Poster
Scientific Poster
On-Demand Training

Publications (32)

Functional characterization of the MED12 p.Arg1138Trp variant in females: implications for neural development and disease mechanism N. C. Shaw et al. Molecular Medicine 2025 Sep

Abstract

Seven female individuals with multiple congenital anomalies, developmental delay and/or intellectual disability have been found to have a genetic variant of uncertain significance in the mediator complex subunit 12 gene ( MED12 c.3412C>T, p.Arg1138Trp). The functional consequence of this genetic variant in disease is undetermined, and insight into disease mechanism is required. We identified a de novo MED12 p.Arg1138Trp variant in a female patient and compared disease phenotypes with six female individuals identified in the literature. To investigate affected biological pathways, we derived two induced pluripotent stem cell (iPSC) lines from the patient: one expressing wildtype MED12 and the other expressing the MED12 p.Arg1138Trp variant. We performed neural disease modelling, transcriptomics and protein analysis, comparing healthy and variant cells. When comparing the two cell lines, we identified altered gene expression in neural cells expressing the variant, including genes regulating RNA polymerase II activity, transcription, pre-mRNA processing, and neural development. We also noted a decrease in MED12L expression. Pathway analysis indicated temporal delays in axon development, forebrain differentiation, and neural cell specification with significant upregulation of pre-ribosome complex gene pathways. In a human neural model, expression of MED12 p.Arg1138Trp altered neural cell development and dysregulated the pre-ribosome complex providing functional evidence of disease aetiology and mechanism in MED12-related disorders. The online version contains supplementary material available at 10.1186/s10020-025-01365-5.
Lithium partially rescues gene expression and enhancer activity from heterozygous knockout of AKAP11 while inducing novel differential changes N. Farhangdoost et al. Scientific Reports 2025 Oct

Abstract

Bipolar disorder (BD) is a complex psychiatric condition usually requiring long-term treatment. Lithium (Li) remains the most effective mood stabilizer for BD, yet it benefits only a subset of patients, and its precise mechanism of action remains elusive. Exome sequencing has identified AKAP11 (A-kinase anchoring protein 11) as a shared risk gene for BD and schizophrenia (SCZ). Given that both the AKAP11-Protein Kinase A (PKA) complex and Li target and inhibit Glycogen Synthase Kinase-3 beta (GSK3β), we hypothesize that Li may partially normalize the transcriptomic and/or epigenomic alterations observed in heterozygous AKAP11-knockout (Het-AKAP11-KO) iPSC-derived neurons. In this study, we employed genome-wide approaches to assess the effects of Li on the transcriptome and epigenome of human iPSC-derived Het-AKAP11-KO neuronal culture. We show that chronic Li treatment in this cellular model upregulates key pathways that were initially downregulated by Het-AKAP11-KO, several of which have also been reported as downregulated in synapses of BD and SCZ post-mortem brain tissues. Moreover, we demonstrated that Li treatment partially rescues certain transcriptomic alterations resulting from Het-AKAP11-KO, bringing them closer to the WT state. We suggest two possible mechanisms underlying these transcriptomic effects: (1) Li modulates histone H3K27ac levels at intergenic and intronic enhancers, influencing enhancer activity and transcription factor binding, and (2) Li enhances GSK3β serine 9 phosphorylation, impacting WNT/β-catenin signaling and downstream transcription. These findings underscore Li’s potential as a therapeutic agent for BD and SCZ patients carrying AKAP11 loss-of-function variants or exhibiting similar pathway alterations to those observed in Het-AKAP11-KO models.
High-throughput transcriptomic screening reveals entrectinib as a repositioning opportunity in 19q12 autism spectrum disorder D. Guin et al. Scientific Reports 2025 Nov

Abstract

Discovering new and viable therapies for genetic diseases is a time-consuming and cost-intensive process, especially for rare disorders. In this study, we highlight how a high-throughput drug discovery platform was utilized to uncover drugs at scale that normalized the signature for a rare neurological neurodevelopmental disease, 19q12 autism spectrum disorder (ASD) associated with deficiencies in ZNF536 and TSHZ3. We first identified the transcriptomic fingerprint of the disease in an in vitro disease model in the form of dysregulated pathways. Subsequently, we measured the biological impact of small molecule drugs in a relevant wild-type cell line and uncovered an approved drug Entrectinib that induced the opposite effect to that in the disease fingerprint, demonstrating the capability to normalize the disease fingerprint. Entrectinib was further prescribed off-label to the identified patient with 19q12 and drug effect was characterized both from blood collection and neuropsychological assessments. Biomarkers from blood recapitulated Entrectinib’s pharmacodynamic effect and normalized the disease signature. We show how generation of transferrable transcriptomics-derived disease signatures allows for measuring drug effects on a signature in related wild-type cell lines, making the screen universally applicable and reducing the need for expensive screens in disease models.
Need a high-quality cell source? Choose from our hiPSC healthy control lines, manufactured with mTeSR™ Plus.