º£½ÇÆÆ½â°æ

¸é±ð³¢±ð³§¸éâ„¢

cGMP, enzyme-free human pluripotent stem cell selection and passaging reagent

¸é±ð³¢±ð³§¸éâ„¢

cGMP, enzyme-free human pluripotent stem cell selection and passaging reagent

Catalog #
(Select a product)
cGMP, enzyme-free human pluripotent stem cell selection and passaging reagent
Request Pricing Request Pricing

Product Advantages


  • Simplify cell passaging with a straightforward protocol

  • Eliminate the need for manual removal (selection) of differentiated cells

  • Generate cell aggregates without manual scraping

  • Passage cells in flasks and large culture vessels

  • Obtain quality cutures with this gentle, chemically defined, enzyme-free, GMP solution

  • Achieve high expansion of human ES/iPS cells after passaging

Overview

Efficiently dissociate and passage human embryonic stem (ES) or induced pluripotent stem (iPS) cells as aggregates without manual selection or scraping with ¸é±ð³¢±ð³§¸éâ„¢. Passaging human ES/iPS cells with ¸é±ð³¢±ð³§¸éâ„¢ easily generates optimally-sized aggregates, while eliminating the hassle and variability associated with manual manipulation. By eliminating the need for manual scraping, this enzyme-free reagent enables the use of culture flasks and other closed vessels, facilitating cell culture scale-up and automation. ¸é±ð³¢±ð³§¸éâ„¢ is manufactured following relevant cGMPs under a certified quality management system to ensure the highest quality and consistency for reproducible results.

To request a Letter of Authorization (LOA) for ReLeSR’s Drug Master File, click here.
Subtype
Non-Enzymatic
Cell Type
Pluripotent Stem Cells
Species
Human
Application
Cell Culture
Brand
ReLeSR
Area of Interest
Stem Cell Biology

Data Figures

Passaging Protocol Comparison

Figure 1. Passaging Protocol Comparison

ReLeSR™ passaging protocol eliminates difficult and time-consuming steps, thereby enabling easy culture scale-up.
Surface area of 4 x 6 well plates (230 cm²) is comparable to that of a T225 flask (225 cm²).
TeSR™ = TeSR™ family media (mTeSR™1, TeSR™2, or TeSR™-E8™).

Selectively Detach Undifferentiated Cells

Figure 2. Selectively Detach Undifferentiated Cells

ReLeSR™ selectively detaches undifferentiated cells from pluripotent stem cell cultures without manual selection. Optimally-sized aggregates are generated following shaking/tapping of the cultureware.
(A) An hPSC culture ready for passaging. Note the presence of differentiated cells at the edge of the undifferentiated hPSC colony. (B) Following incubation with ReLeSR™, the undifferentiated hPSC colony starts to lift off of the cultureware. The differentiated cells remain attached to the cultureware. (C) Following shaking/tapping of the cultureware, the undifferentiated cells completely lift off of the cultureware. (D) The undifferentiated hPSC colony is broken up into optimally-sized aggregates for replating.

Rescue Highly Differentiated Cultures

Figure 3. Rescue Highly Differentiated Cultures

Poor quality human pluripotent stem cell cultures containing large proportions of differentiated cells can be rescued by passaging with ReLeSR™. (A) A poor quality hPSC culture containing ~50% undifferentiated cells. (B) Following passaging with ReLeSR™, the differentiated cells have largely been eliminated from the culture, with >90% undifferentiated cells present at the end of the next passage.

Select Putative iPS Cell Clones

Figure 4. Select Putative iPS Cell Clones

Easily isolate newly generated human iPS cell colonies with ReLeSR™ by selectively detaching undifferentiated cells and leaving non reprogrammed cells behind.
(A) A TeSR™-E7™ reprogramming culture which has been treated with ReLeSR™ to detach the putative iPS cell colony, leaving the non-reprogrammed and differentiated cells behind. (B) Cultures contain a high proportion of undifferentiated cells by the end of the first passage.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
100-0484, 100-0483
Lot #
Lot 1000161526 and higher For 100-0483 | Lot 1000167368 and higher For 100-0484
Language
English
Document Type
Product Name
Catalog #
100-0484, 100-0483
Lot #
Lot 1000161525 and lower For 100-0483 | Lot 1000167367 and lower For 100-0484
Language
English
Document Type
Product Name
Catalog #
100-0484
Lot #
All
Language
English
Document Type
Product Name
Catalog #
100-0483
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Publications (175)

Protective mechanisms against Alzheimer's disease in APOE3â€Christchurch homozygous astrocytes X. Tian et al. Alzheimer's & Dementia 2025 Sep

Abstract

Alzheimer's disease (AD) is characterized by tau pathology, leading to neurodegeneration. Astrocytes regulate central nervous system homeostasis and influence AD progression. The APOE3â€Christchurch (APOE3â€Ch) variant is linked to AD resilience, but its protective mechanisms remain unclear. Human induced pluripotent stem cell–derived astrocytes (APOE3â€Ch and wild type) were used to assess tau uptake, clearance, lipid metabolism, and transcriptomic adaptations. Fluorescently labeled 2N4Râ€P301L tau oligomers were tracked, and pathwayâ€specific inhibitors dissected tau clearance mechanisms. Lipidomic and transcriptomic analyses were performed to identify genotypeâ€specific adaptations. APOE3â€Ch astrocytes exhibited enhanced tau uptake via heparan sulfate proteoglycan†and lipoprotein receptorâ€related protein 1â€mediated pathways and superior clearance through lysosomal and proteasomal degradation. They exported less tau, limiting propagation. Transcriptomic analyses revealed upregulation of genes involved in cell projection assembly and endocytosis. Lipidomic profiling showed reduced ceramides and gammaâ€linolenic acid, linked to decreased neuroinflammation and ferroptosis. APOE3â€Ch astrocytes promote tau clearance and metabolic adaptations, providing insights into genetic resilience in AD and potential therapeutic targets. APOE3â€Christchurch (APOE3â€Ch) astrocytes exhibit significantly increased tau internalization compared to wildâ€type astrocytes, facilitated by upregulated heparan sulfate proteoglycan and lowâ€density lipoprotein receptorâ€related protein 1 pathways. APOE3â€Ch astrocytes demonstrate more efficient tau degradation via both lysosomal and proteasomal pathways, while exporting significantly less tau, potentially reducing tau propagation in the central nervous system. APOE3â€Ch astrocytes show upregulation of genes involved in cell projection assembly and endocytosis, suggesting structural and functional modifications that enhance tau processing. Lipidomic profiling reveals reduced ceramide levels and gammaâ€linolenic acid downregulation in APOE3â€Ch astrocytes, alterations linked to reduced neuroinflammatory and ferroptotic activity, contributing to the protective phenotype.
Human Retinal Organoid Modeling Defines Developmental Window and Therapeutic Vulnerabilities in MYCN-Amplified Retinoblastoma J. Park et al. International Journal of Molecular Sciences 2025 Sep

Abstract

MYCN amplification without concurrent RB1 mutations characterizes a rare yet highly aggressive subtype of retinoblastoma; however, its precise developmental origins and therapeutic vulnerabilities remain incompletely understood. Here, we modeled this subtype by lentiviral-mediated MYCN overexpression in human pluripotent stem cell-derived retinal organoids, revealing a discrete developmental window (days 70–120) during which retinal progenitors showed heightened susceptibility to transformation. Tumors arising in this period exhibited robust proliferation, expressed SOX2, and lacked CRX, consistent with origin from primitive retinal progenitors. MYCN-overexpressing organoids generated stable cell lines that reproducibly gave rise to MYCN-driven tumors when xenografted into immunodeficient mice. Transcriptomic profiling demonstrated that MYCN-overexpressing organoids closely recapitulated molecular features of patient-derived MYCN-amplified retinoblastomas, particularly through activation of MYC/E2F and mTORC1 signaling pathways. Pharmacological screening further identified distinct therapeutic vulnerabilities, demonstrating distinct subtype-specific sensitivity of MYCN-driven cells to transcriptional inhibitors (THZ1, Flavopiridol) and the cell-cycle inhibitor Volasertib, indicative of a unique oncogene-addicted state compared to RB1-deficient retinoblastoma cells. Collectively, our study elucidates the developmental and molecular mechanisms underpinning MYCN-driven retinoblastoma, establishes a robust and clinically relevant human retinal organoid platform, and highlights targeted transcriptional inhibition as a promising therapeutic approach for this aggressive pediatric cancer subtype.
Modular RNA interactions shape FXR1 condensates involved in mRNA localization and translation J. Yang et al. Nature Communications 2025 Sep

Abstract

Biomolecular condensates are found throughout a diversity of eukaryotic cell types and cellular compartments, playing roles in various cellular functions. A given protein generally forms functionally and compositionally heterogeneous condensates, but the underlying regulatory mechanisms are unknown. Here, we found that different RNA motifs modulate the formation of heterogeneous mRNA-protein condensates via riboregulation. Fragile X-related 1 (FXR1), an RNA-binding protein interacting with nuclear pores, assembles distinct localized subcellular mRNP condensates linked to cytosolic accumulation of G-quadruplex-containing pluripotent mRNAs and the localized translation of nucleoporin mRNAs at nuclear pores. The diverse locations of FXR1 condensates depend on the unique RNA-protein interaction modules of its two RNA binding domains, and the opposing effects of different RNA motifs on the affinity of FXR1 for nuclear pores. Notably, reduced FXR1 levels and impaired nuclear pore function lead to the nuclear accumulation of transcribed RNAs, facilitating fate transition in human embryonic stem cells. Preventing this decline would result in impaired hESC differentiation. Subject terms: RNA metabolism, Embryonic stem cells, RNA, RNA transport