º£½ÇÆÆ½â°æ

³¾°Õ±ð³§¸éâ„¢1

cGMP, feeder-free maintenance medium for human ES and iPS cells

Need a high-quality cell source? Choose from our hiPSC healthy control lines, manufactured with mTeSRâ„¢ Plus.

³¾°Õ±ð³§¸éâ„¢1

cGMP, feeder-free maintenance medium for human ES and iPS cells

Catalog #
(Select a product)
cGMP, feeder-free maintenance medium for human ES and iPS cells
Request Pricing Request Pricing

What's Included

  • ³¾°Õ±ð³§¸éâ„¢1 Complete Kit (Catalog #85850)
    • ³¾°Õ±ð³§¸éâ„¢1 Basal Medium, 400 mL
    • ³¾°Õ±ð³§¸éâ„¢1 5X Supplement, 100 mL
  • ³¾°Õ±ð³§¸éâ„¢1 Complete Kit, 1 L (Catalog #85857)
    • ³¾°Õ±ð³§¸éâ„¢1 Basal Medium, 800 mL
    • ³¾°Õ±ð³§¸éâ„¢1 5X Supplement, 100 mL, 2 Bottles

What Our Scientist Says

It makes me proud knowing that my work is critical to keeping thousands of hPSC lines reliably healthy and consistent around the world.

Arwen HunterAssociate Director, Stem Cell Biology
Arwen Hunter, Associate Director, Stem Cell Biology

Overview

Use this specialized, feeder-free culture medium to achieve more consistent human pluripotent stem cell (hPSC) cultures with homogenous, undifferentiated phenotypes.

Manufactured under relevant cGMPs, ³¾°Õ±ð³§¸éâ„¢1 ensures the highest quality and consistency for reproducible results in your fundamental research, as well as for cell therapy and investigational new drug research applications. This serum-free, complete cell culture medium is made with pre-screened raw materials to ensure batch-to-batch consistency and robust performance in feeder-free hPSC culture.

Use established protocols for applications ranging from derivation to differentiation with this most widely published feeder-free hPSC culture medium, which has been used by leading pluripotent stem cell researchers to successfully maintain thousands of hPSC lines in over 50 countries. For enhanced cell performance and versatile maintenance, you may also be interested in mTeSRâ„¢ Plus medium, which is also manufactured under relevant cGMPs and features stabilized components and enhanced buffering.

To request a Letter of Authorization (LOA) for the FDA Master File for ³¾°Õ±ð³§¸éâ„¢1, click here.
Subtype
Specialized Media
Cell Type
Pluripotent Stem Cells
Species
Human
Application
Cell Culture, Expansion, Maintenance
Brand
TeSR
Area of Interest
Stem Cell Biology
Formulation Category
Serum-Free

Data Figures

Figure 1. Normal hES and hiPS Cell Morphology is Observed in cGMP ³¾°Õ±ð³§¸éâ„¢1 Cultures

Undifferentiated (A) H1 human embryonic stem (hES) and (B) WLS-1C human induced pluripotent stem (hiPS) cells cultured on Corning® Matrigel® Matrix in cGMP ³¾°Õ±ð³§¸éâ„¢1 retain the prominent nucleoli and high nuclear-to-cytoplasmic ratio characteristic of this cell type after 10 passages. Densely packed cells and multi-layering are prominent when cells are ready to be passaged.

Figure 2. High Expansion Rates are Observed in cGMP ³¾°Õ±ð³§¸éâ„¢1 Cultures

Graph shows the average fold expansion per passage +/- SEM obtained for hES (H1 and H9) and hiPS (WLS-1C) cells cultured in cGMP mTeSR­™1 (red) or non-cGMP ³¾°Õ±ð³§¸éâ„¢1 (gray) on Corning® Matrigel® Matrix over 10 passages. Expansion was determined by enumerating the cell aggregates obtained at harvest and dividing by the number of cell aggregates seeded. Note that this data is representative of cultures passaged after 6-7 days in culture, lower expansion should be expected if using shorter culture times.

Figure 3. Cells Cultured in cGMP ³¾°Õ±ð³§¸éâ„¢1 Medium Express Undifferentiated Cell Markers

Histogram analysis for hES (H1 and H9) and hiPS (WLS-1C) cells characterized using FACS for undifferentiated cell markers, OCT4 (OCT3) (Catalog #60093) and TRA-1-60 (Catalog #60064), after 8 - 10 passages in cGMP ³¾°Õ±ð³§¸éâ„¢1 (filled = sample, blank = isotype control).

Figure 4. hPSCs Maintained in cGMP ³¾°Õ±ð³§¸éâ„¢1 Display a Normal Karyotype

Karyograms of (A) H1 hES and (B) WLS-1C hiPS cells cultured in cGMP ³¾°Õ±ð³§¸éâ„¢1 for 11 passages shows that a normal karyotype is retained.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
85857, 85850
Lot #
All
Language
English
Document Type
Product Name
Catalog #
85850, 85857
Lot #
All
Language
English
Document Type
Product Name
Catalog #
85857, 85850
Lot #
All
Language
English
Document Type
Product Name
Catalog #
85857, 85850
Lot #
All
Language
English
Document Type
Product Name
Catalog #
85857, 85850
Lot #
All
Language
English
The Certificate of Analysis for this product has been updated for newly released materials. To access respective CoAs please use this tool.

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Educational Materials (41)

Brochure
Brochure
Brochure
Brochure
Brochure
Brochure

Publications (1871)

Distinct Inflammatory Responses of hiPSC-Derived Endothelial Cells and Cardiomyocytes to Cytokines Involved in Immune Checkpoint Inhibitor-Associated Myocarditis S. Conte et al. Cells 2025 Sep

Abstract

Inflammatory cytokines, particularly interferon-γ (IFN-γ), are markedly elevated in the peripheral blood of patients with immune checkpoint inhibitor-induced myocarditis (ICI-M). Endomyocardial biopsies from these patients also show GBP-associated inflammasome overexpression. While both factors are implicated in ICI-M pathophysiology, their interplay and cellular targets remain poorly characterized. Our aim was to elucidate how ICI-M-associated cytokines affect the viability and inflammatory responses of endothelial cells (ECs) and cardiomyocytes (CMs) using human induced pluripotent stem cell (hiPSC)-derived models. ECs and CMs were differentiated from the same hiPSC line derived from a healthy donor. Cells were exposed either to IFN-γ alone or to an inflammatory cytokine cocktail (CCL5, GZMB, IL-1β, IL-2, IL-6, IFN-γ, TNF-α). We assessed large-scale transcriptomic changes via microarray and evaluated inflammatory, apoptotic, and cell death pathways at cellular and molecular levels. hiPSC-ECs were highly sensitive to cytokine exposure, displaying significant mortality and marked transcriptomic changes in immunity- and inflammation-related pathways. In contrast, hiPSC-CM showed limited transcriptional changes and reduced susceptibility to cytokine-induced death. In both cell types, cytokine treatment upregulated key components of the inflammasome pathway, including regulators (GBP5, GBP6, P2X7, NLRC5), a core component (AIM2), and the effector GSDMD. Increased GBP5 expression and CASP-1 cleavage mirrored the findings found elsewhere in endomyocardial biopsies from ICI-M patients. This hiPSC-based model reveals a distinct cellular sensitivity to ICI-M-related inflammation, with endothelial cells showing heightened vulnerability. These results reposition endothelial dysfunction, rather than cardiomyocyte injury alone, as a central mechanism in ICI-induced myocarditis. Modulating endothelial inflammasome activation, particularly via AIM2 inhibition, could offer a novel strategy to mitigate cardiac toxicity while preserving antitumor efficacy.
Infecting human brain organoids with FFI or sCJD preserves prion traits regardless of host genotype B. R. Groveman et al. NPJ dementia 2025 Sep

Abstract

Prion diseases, such as sporadic Creutzfeldt-Jakob Disease (sCJD), are neurodegenerative disorders caused by misfolding of the prion protein (PrP). The D178N mutation in the PrP gene causes Fatal Familial Insomnia (FFI). Here we show that both sCJD and FFI prions can infect human cerebral organoids with or without the D178N mutation, and that the resulting infection is dictated by the inoculating prion and not the host organoid genotype.
Human Retinal Organoid Modeling Defines Developmental Window and Therapeutic Vulnerabilities in MYCN-Amplified Retinoblastoma J. Park et al. International Journal of Molecular Sciences 2025 Sep

Abstract

MYCN amplification without concurrent RB1 mutations characterizes a rare yet highly aggressive subtype of retinoblastoma; however, its precise developmental origins and therapeutic vulnerabilities remain incompletely understood. Here, we modeled this subtype by lentiviral-mediated MYCN overexpression in human pluripotent stem cell-derived retinal organoids, revealing a discrete developmental window (days 70–120) during which retinal progenitors showed heightened susceptibility to transformation. Tumors arising in this period exhibited robust proliferation, expressed SOX2, and lacked CRX, consistent with origin from primitive retinal progenitors. MYCN-overexpressing organoids generated stable cell lines that reproducibly gave rise to MYCN-driven tumors when xenografted into immunodeficient mice. Transcriptomic profiling demonstrated that MYCN-overexpressing organoids closely recapitulated molecular features of patient-derived MYCN-amplified retinoblastomas, particularly through activation of MYC/E2F and mTORC1 signaling pathways. Pharmacological screening further identified distinct therapeutic vulnerabilities, demonstrating distinct subtype-specific sensitivity of MYCN-driven cells to transcriptional inhibitors (THZ1, Flavopiridol) and the cell-cycle inhibitor Volasertib, indicative of a unique oncogene-addicted state compared to RB1-deficient retinoblastoma cells. Collectively, our study elucidates the developmental and molecular mechanisms underpinning MYCN-driven retinoblastoma, establishes a robust and clinically relevant human retinal organoid platform, and highlights targeted transcriptional inhibition as a promising therapeutic approach for this aggressive pediatric cancer subtype.
Need a high-quality cell source? Choose from our hiPSC healthy control lines, manufactured with mTeSRâ„¢ Plus.