New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more
Request Pricing
Thank you for your interest in this product.
Please provide us with your contact information and your local representative
will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to 海角破解版 Technologies Canada Inc. and its subsidiaries and affiliates (“海角破解版”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
This site is protected by reCAPTCHA and the ?and??apply.
Easily and efficiently isolate highly purified human CD14+ monocytes directly from human whole blood samples by immunomagnetic negative selection, with the EasySep? Direct Human Monocyte Isolation Kit. Widely used in published research for more than 20 years, EasySep? combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.
In this EasySep? negative selection procedure, unwanted cells are labeled with antibody complexes and magnetic particles called EasySep? Direct RapidSpheres?. The following unwanted cells are targeted for removal: granulocytes, T cells, B cells, NK cells, dendritic cells, platelets, and erythroid cells. The magnetically labeled cells are then separated from the untouched desired CD14+ monocytes by using an EasySep? magnet and simply pouring or pipetting the desired cells into a new tube. Following magnetic cell isolation, the desired CD14+ monoctes are ready for downstream applications such as flow cytometry, culture, or DNA/RNA extraction.
Learn more about how immunomagnetic EasySep? technology works or how to fully automate immunomagnetic cell isolation with RoboSep? to save time and increase laboratory throughput. Explore additional products optimized for your workflow, including those for cell characterization, cryopreservation, and more.
Figure 1. Typical EasySep™ Direct Human Monocyte Isolation Profile
Starting with human whole blood from normal healthy donors, the typical monocyte (CD14+) content of the non-lysed final Isolated fraction is 82.2 ± 8.4% (gated on CD45) or 79.0 ± 10.1% (not gated on CD45). In the example above, the monocyte (CD14+) content of the lysed whole blood start sample and the non-lysed final isolated fraction is 6.5% and 88.3% (gated on CD45), respectively, or 6.4% and 85.7% (not gated on CD45), respectively. The starting frequency of monocytes in the non-lysed whole blood start sample above is approximately 0.007% (data not shown).
Figure 2. Use of Highly Enriched Lymphocytes Isolated with EasySep? Direct Improves Donor Specific Antibody DSA Detection Compared to Whole Leukocyte Cell Preparations
Lymphocytes (Ly), neutrophils (Nu), and monocytes (Mo) were isolated from volunteer donors (n=5) using EasySep? Direct Human Total Lymphocyte Isolation Kit (Catalog #19655), Human Neutrophil Isolation Kit (Catalog #19666), and Human Monocyte Isolation Kit (Catalog #19669). Whole leukocyte (WL) preparations were obtained by adding Ly, Nu, and Mo cells in equal proportions. WL (low lymphocyte purity) and Ly (high lymphocyte purity) preparations were treated with pronase and then used to perform the FCXM assay against negative control sera or several dilutions of positive control sera. The median channel fluorescence shifts (MCFS) were generated by using the negative control sera samples as a baseline. The MCF shifts between WL and Ly were then compared. Each column with error bars represents the mean ± SEM (n = 5 donors). Data kindly provided by Dr. Robert Liwski.
This product is designed for use in the following research area(s) as part
of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we
offer to support each research area.
Can EasySep™ be used for either positive or negative selection?
Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).
How does the separation work?
Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.
Which columns do I use?
The EasySep™ procedure is column-free. That's right - no columns!
How can I analyze the purity of my enriched sample?
The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.
Can EasySep™ separations be automated?
Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.
Can EasySep™ be used to isolate rare cells?
Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.
Are the EasySep™ magnetic particles FACS-compatible?
Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.
Can the EasySep™ magnetic particles be removed after enrichment?
No, but due to the small size of these particles, they will not interfere with downstream applications.
Can I alter the separation time in the magnet?
Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.
For positive selection, can I perform more than 3 separations to increase purity?
Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.
How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?
Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.
If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.
Targeting CD37 promotes macrophage-dependent phagocytosis of multiple cancer cell types and facilitates tumor clearance in mice
Nature Communications 2025 Jul
Abstract
Macrophages play vital roles in innate and adaptive immunity, and their functions are mediated via phagocytosis and antigen presentation. Despite the effort to identify phagocytic checkpoints and explore their mechanism of action, current checkpoint-scanning strategies cannot provide a complete and systematic list of such immune checkpoints. Here, we perform in vitro phagocytosis assays using primary healthy donor macrophages co-cultured with breast cancer cells followed by ribosome profiling of sorted macrophages, to identify immune system-specific checkpoints. We observe a downregulation of CD37 in phagocytic macrophages and demonstrate that targeting CD37 with a specific antibody promotes the phagocytosis of multiple cancer cells in vitro. Mechanistically, tumorous macrophage migration inhibitory factor (MIF) directly binds to CD37, promoting the phosphorylation of CD37Y13 and activating a transduction cascade that involves the recruitment of SHP1 and inhibition of AKT signaling, ultimately impairing phagocytosis. In vivo, targeting CD37 promotes tumor clearance in multiple preclinical mouse models and synergizes with anti-CD47 therapy. Thus, our study identifies a previously unidentified phagocytic checkpoint and provides new potential for precise therapy. Cancer cells evade the immune system by disrupting phagocytic clearance. Here, the authors identify CD37 as a potential checkpoint molecule expressed on non-phagocytes and propose that binding to tumor-derived MIF reduces the phagocytic ability via inhibiting the AKT pathway. In preclinical mouse models, anti-CD37-based therapy enhances phagocytosis by macrophages, facilitating tumor clearance.
Imaging of macrophage accumulation in solid tumors with ultrasound
Nature Communications 2025 Jul
Abstract
Imaging macrophage trafficking in solid tumors has major implications for cancer diagnosis, prognosis, and therapy. Here, we show that macrophage labeling with lipid-shelled microbubbles enables ultrasound imaging at single-cell level. Crucially, microbubble labeling and sonication at low mechanical indexes do not affect macrophage viability, migration, phenotype, and cytokine secretion profile, supporting the notion that ultrasound imaging can be used for nondestructive macrophage imaging. Despite the damping exerted on the microbubble oscillations by the cellular compartments, the microbubbles exhibit highly nonlinear behavior upon sonication, allowing for high specificity nonlinear US imaging under in vitro and in vivo conditions. Subsequently, we demonstrate that nonlinear ultrasound imaging can selectively monitor macrophage accumulation and extravasation in solid tumors in rodents for at least 8?h after intravenous administration. These findings establish ultrasound as a noninvasive platform for immune cell trafficking in solid tumors and highlight its potential to advance cancer diagnosis, monitoring, and therapy. Imaging macrophage trafficking in solid tumors has implications for cancer diagnosis and prognosis. by labeling macrophages with lipid-shelled microbubbles in combination with ultrasound, the authors here achieve nondestructive in vivo intravenously administrated macrophage imaging at single cell level with 100??m resolution till 8?h in solid tumors in rodents.
Profiling migration of human monocytes in response to chemotactic and barotactic guidance cues
Cell Reports Methods 2024 Sep
Abstract
SummaryMonocytes are critical to innate immunity, participating in chemotaxis during tissue injury, infection, and inflammatory conditions. However, the migration dynamics of human monocytes under different guidance cues are not well characterized. Here, we developed a microfluidic device to profile the migration characteristics of human monocytes under chemotactic and barotactic guidance cues while also assessing the effects of age and cytokine stimulation. Human monocytes preferentially migrated toward the CCL2 gradient through confined microchannels, regardless of donor age and migration pathway. Stimulation with interferon (IFN)-γ, but not granulocyte-macrophage colony-stimulating factor (GM-CSF), disrupted monocyte navigation through complex paths and decreased monocyte CCL2 chemotaxis, velocity, and CCR2 expression. Additionally, monocytes exhibited a bias toward low-hydraulic-resistance pathways in asymmetric environments, which remained consistent across donor ages, cytokine stimulation, and chemoattractants. This microfluidic system provides insights into the unique migratory behaviors of human monocytes and is a valuable tool for studying peripheral immune cell migration in health and disease. Graphical abstract Highlights?The MAP chip profiles migration of human monocytes under various chemotactic and barotactic cues?Monocytes preferentially migrate toward CCL2 gradients, regardless of migration pathway and donor age?IFN-γ reduces human monocyte chemotaxis, velocity, and CCR2 expression?Human monocytes show biased migration toward low-hydraulic-resistance pathways MotivationCell migration is fundamental to the biological processes that drive health and disease. While in?vivo models provide invaluable insights into cell migration within complex biological environments, precise control over the microenvironment and single-cell tracking is essential to deepen our understanding of the fundamental characteristics of cell migration. We present a high-throughput microfluidic platform, termed the migration analysis of peripheral immune cells (MAP) chip, that features four distinct sets of microchannels designed to assess the effects of both chemotactic and barotactic stimuli on cell migration at a single-cell level. By profiling human monocyte migration using the MAP chip, we demonstrated the utility of this device in characterizing migration of human monocytes under diverse conditions. Hall et?al. introduce the MAP chip, a microfluidic platform for profiling human monocytes under chemotactic and barotactic guidance cues. It reveals biased migration toward low-hydraulic-resistance pathways, disrupted migration upon cytokine stimulation, and consistent chemotaxis and barotaxis across donor ages—enhancing our understanding of human monocyte migration characteristics.
Mouse monoclonal IgG1 antibody against human, chimpanzee CD45
Item added to your cart
EasySep? Direct Human Monocyte Isolation Kit
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more
Quality Statement:
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT 海角破解版, REFER TO WWW.海角破解版.COM/COMPLIANCE.