References
Items 97 to 108 of 7892 total
- Osada H et al. (APR 2001) Transfusion 41 4 499--503
Detection of fetal HPCs in maternal circulation after delivery.
BACKGROUND: Circulation of mature fetal blood cells in the maternal blood for a certain postpartum period has been verified, but detailed study of the fetal HPCs has not been reported. The objective of this study was to evaluate the frequency and clearance of these cells in the peripheral blood of puerperal women. STUDY DESIGN AND METHODS: PBMNCs from 15 puerperal women who gave birth to male infants were cultured in semi-solid medium containing hematopoietic stimulating factors. Colonies formed in the medium were individually characterized, collected, and subjected to PCR amplification of the SRY gene on Y chromosome to confirm fetal origin. RESULTS: The mean numbers of fetal progenitor cell colonies isolated per mL of maternal blood were 1.63, 2.48, 0.56, 0.12, and 0 on the day of delivery, at 4 days, 1 month, 6 months, and 1 year after delivery, respectively. There was no difference in the ratio of fetal versus maternal colonies between erythroid and granulocyte/macrophage lineages. CONCLUSION: The present study demonstrated that a significant number of fetal HPCs circulate in the maternal blood for a duration of at least 6 months after delivery.Lumelsky N et al. (MAY 2001) Science (New York, N.Y.) 292 5520 1389--94Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.
Although the source of embryonic stem (ES) cells presents ethical concerns, their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas, insulin is produced and secreted by specialized structures, islets of Langerhans. Diabetes, which affects 16 million people in the United States, results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice, the insulin-producing cells undergo rapid vascularization and maintain a clustered, islet-like organization.Tropepe V et al. (APR 2001) Neuron 30 1 65--78Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism.
Little is known about how neural stem cells are formed initially during development. We investigated whether a default mechanism of neural specification could regulate acquisition of neural stem cell identity directly from embryonic stem (ES) cells. ES cells cultured in defined, low-density conditions readily acquire a neural identity. We characterize a novel primitive neural stem cell as a component of neural lineage specification that is negatively regulated by TGFbeta-related signaling. Primitive neural stem cells have distinct growth factor requirements, express neural precursor markers, generate neurons and glia in vitro, and have neural and non-neural lineage potential in vivo. These results are consistent with a default mechanism for neural fate specification and support a model whereby definitive neural stem cell formation is preceded by a primitive neural stem cell stage during neural lineage commitment.Benford HL et al. (MAY 2001) Bone 28 5 465--73Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro.
Bisphosphonates inhibit osteoclast-mediated bone resorption by mechanisms that have only recently become clear. Whereas nitrogen-containing bisphosphonates affect osteoclast function by preventing protein prenylation (especially geranylgeranylation), non-nitrogen-containing bisphosphonates have a different molecular mechanism of action. In this study, we demonstrate that nitrogen-containing bisphosphonates (risedronate, alendronate, pamidronate, and zoledronic acid) and non-nitrogen-containing bisphosphonates (clodronate and etidronate) cause apoptosis of rabbit osteoclasts, human osteoclastoma-derived osteoclasts, and human osteoclast-like cells generated in cultures of bone marrow in vitro. Osteoclast apoptosis was shown to involve characteristic morphological changes, loss of mitochondrial membrane potential, and the activation of caspase-3-like proteases capable of cleaving peptide substrates with the sequence DEVD. Caspase-3-like activity could be visualized in unfixed, dying osteoclasts and osteoclast-like cells using a cell-permeable, fluorogenic substrate. Bisphosphonate-induced osteoclast apoptosis was dependent on caspase activation, because apoptosis resulting from alendronate, clodronate, or zoledronic acid treatment was suppressed by zVAD-fmk, a broad-range caspase inhibitor, or by SB-281277, a specific isatin sulfonamide inhibitor of caspase-3/-7. Furthermore, caspase-3 (but not caspase-6 or caspase-7) activity could be detected and quantitated in lysates from purified rabbit osteoclasts, whereas the p17 fragment of active caspase-3 could be detected in human osteoclast-like cells by immunofluorescence staining. Caspase-3, therefore, appears to be the major effector caspase activated in osteoclasts by bisphosphonate treatment. Caspase activation and apoptosis induced by nitrogen-containing bisphosphonates are likely to be the consequence of the loss of geranylgeranylated rather than farnesylated proteins, because the ability to cause apoptosis and caspase activation was mimicked by GGTI-298, a specific inhibitor of protein geranylgeranylation, whereas FTI-277, a specific inhibitor of protein farnesylation, had no effect on apoptosis or caspase activity.Catalog #: Product Name: 73572 Zoledronic Acid Catalog #: 73572 Product Name: Zoledronic Acid Elzi DJ et al. (JUL 2001) American journal of physiology. Cell physiology 281 1 C350--60Ionomycin causes activation of p38 and p42/44 mitogen-activated protein kinases in human neutrophils.
Many receptor-linked agents that prime or activate the NADPH oxidase in polymorphonuclear neutrophils (PMNs) elicit changes in cytosolic Ca2+ concentration and activate mitogen-activated protein (MAP) kinases. To investigate the role of Ca2+ in the activation of p38 and p42/44 MAP kinases, we examined the effects of the Ca2+-selective ionophore ionomycin on priming and activation of the PMN oxidase. Ionomycin caused a rapid rise in cytosolic Ca2+ that was due to both a release of cytosolic Ca2+ stores and Ca2+ influx. Ionomycin also activated (2 microM) and primed (20-200 nM) the PMN oxidase. Dual phosphorylation of p38 MAP kinase and phosphorylation of its substrate activating transcription factor-2 were detected at ionomycin concentrations that prime or activate the PMN oxidase, while dual phosphorylation of p42/44 MAP kinase and phosphorylation of its substrate Elk-1 were elicited at 0.2-2 microM. SB-203580, a p38 MAP kinase antagonist, inhibited ionomycin-induced activation of the oxidase (68 +/- 8%, P textless 0.05) and tyrosine phosphorylation of 105- and 72-kDa proteins; conversely, PD-98059, an inhibitor of MAP/extracellular signal-related kinase 1, had no effect. Treatment of PMNs with thapsigargin resulted in priming of the oxidase and activation of p38 MAP kinase. Chelation of cytosolic but not extracellular Ca2+ completely inhibited ionomycin activation of p38 MAP kinase, whereas chelation of extracellular Ca2+ abrogated activation of p42/44 MAP kinase. These results demonstrate the importance of changes in cytosolic Ca2+ for MAP kinase activation in PMNs.Catalog #: Product Name: 73722 Ionomycin Catalog #: 73722 Product Name: Ionomycin Barker AJ et al. ( 2001) Bioorganic & medicinal chemistry letters 11 14 1911--1914Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer.
This paper describes the development of the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 from a lead series of 4-anilinoquinazoline compounds. ZD1839 has suitable properties for use as a clinically effective drug and shows activity against human tumours. In particular, the use of pharmacokinetic data in the development of ZD1839 is discussed.Catalog #: Product Name: 73162 Gefitinib Catalog #: 73162 Product Name: Gefitinib Chase JC et al. (JUN 2001) Diseases of Aquatic Organisms 45 2 121--9Analysis of Kudoa thyrsites (Myxozoa: Myxosporea) spore antigens using monoclonal antibodies.
A method employing Percoll gradient centrifugation was developed to purify Kudoa thyrsites spores from somatic muscle tissue of Atlantic salmon Salmo salar. Highly purified spores were then used to immunize inbred BALB/c mice for derivation of hybridomas secreting Kudoa-specific monoclonal antibodies (mAbs). Analysis of mAbs by immunofluorescence microscopy and flow cytometry showed that several were specific for antigens on the surface of K. thyrsites spores whereas other mAbs reacted with polar capsules or with polar filaments of spores of K. thyrsites, K. paniformis and K. crumena. Immunoblots on spore lysates using the surface-binding mAbs showed a broad band of 46 to textgreater 220 kDa, whereas mAbs specific for antigens of polar capsules and polar filaments detected sharper bands of various molecular masses, depending on the Kudoa species. The dominant epitope of the K. thyrsites spore surface antigen was shown to be carbohydrate as determined by its sensitivity to treatment with anhydrous trifluoromethane sulfonic acid and by its resistance to treatment with Proteinase K. Immunofluorescence microscopy using the K. thyrsites-specific mAbs on isolated, intact, permeabilized plasmodia and on thin sections of somatic muscle tissue containing plasmodia revealed intense labeling of spores both within the spore-producing plasmodia and in the flesh of infected Atlantic salmon. As few as 100 spores were detected by immunoblotting, indicating that these mAbs have potential for use in developing a field-based diagnostic test.Catalog #: Product Name: 03800 ClonaCellâ„¢-HY Hybridoma Kit Catalog #: 03800 Product Name: ClonaCellâ„¢-HY Hybridoma Kit Phiel CJ et al. (SEP 2001) The Journal of biological chemistry 276 39 36734--41Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen.
Valproic acid is widely used to treat epilepsy and bipolar disorder and is also a potent teratogen, but its mechanisms of action in any of these settings are unknown. We report that valproic acid activates Wntdependent gene expression, similar to lithium, the mainstay of therapy for bipolar disorder. Valproic acid, however, acts through a distinct pathway that involves direct inhibition of histone deacetylase (IC(50) for HDAC1 = 0.4 mm). At therapeutic levels, valproic acid mimics the histone deacetylase inhibitor trichostatin A, causing hyperacetylation of histones in cultured cells. Valproic acid, like trichostatin A, also activates transcription from diverse exogenous and endogenous promoters. Furthermore, valproic acid and trichostatin A have remarkably similar teratogenic effects in vertebrate embryos, while non-teratogenic analogues of valproic acid do not inhibit histone deacetylase and do not activate transcription. Based on these observations, we propose that inhibition of histone deacetylase provides a mechanism for valproic acid-induced birth defects and could also explain the efficacy of valproic acid in the treatment of bipolar disorder.Kadison A et al. (AUG 2001) Journal of pediatric surgery 36 8 1150--6Retinoid signaling directs secondary lineage selection in pancreatic organogenesis.
BACKGROUND/PURPOSE: Retinoid signaling plays an important role in many differentiation pathways. Retinoid signaling has been implicated in the induction of differentiation by pancreatic ductal cancer cell lines and in patients with pancreatic cancer. The authors wished to better understand the role of retinoid signaling in pancreatic development. METHODS: Embryonic pancreas was harvested from mice at serial gestational ages and immunohistochemical analysis was performed for retinoic acid receptors (RAR-alpha, RAR-beta, RAR-gamma), and retinoid X receptors (RXR-alpha, RXR-beta, and RXR-gamma). Also, early embryonic pancreases were cultured for 7 days with exogenous 9-cis retinoic acid (9cRA) or all-trans retinoic acid (atRA) and analyzed histologically and immunohistochemically. RESULTS: Retinoid receptors were expressed in a lineage-specific distribution, with stronger expression for many in the exocrine compartment. The receptors were not often expressed until late gestation. Exogenous 9cRA induced predominantly ducts instead of acini, plus more mature endocrine (islet) architecture. Exogenous atRA induced predominantly acini instead of ducts, with no apparent endocrine effect. CONCLUSIONS: Retinoids may have an important role in pancreatic differentiation, with a particular effect on secondary lineage selection between ductal and acinar phenotype. Because the control of ductal versus acinar differentiation has been implicated strongly in the pathogenesis of pancreatic ductal carcinoma, these results may lay the groundwork for studies in the mechanism of induced differentiation of pancreatic ductal cancer by retinoids.Catalog #: Product Name: 72382 9-cis Retinoic Acid Catalog #: 72382 Product Name: 9-cis Retinoic Acid Grozinger CM et al. (OCT 2001) The Journal of biological chemistry 276 42 38837--43Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening.
The yeast transcriptional repressor Sir2p silences gene expression from the telomeric, rDNA, and silent mating-type loci and may play a role in higher order processes such as aging. Sir2p is the founding member of a large family of NAD-dependent deacetylase enzymes, named the sirtuins. These proteins are conserved from prokaryotes to eukaryotes, but most remain uncharacterized, including all seven human sirtuins. A reverse chemical genetic approach would be useful in identifying the biological function of sirtuins in a wide variety of experimental systems, but no cell-permeable small molecule inhibitors of sirtuins have been reported previously. Herein we describe a high throughput, phenotypic screen in cells that led to the discovery of a class of sirtuin inhibitors. All three compounds inhibited yeast Sir2p transcriptional silencing activity in vivo, and yeast Sir2p and human SIRT2 deacetylase activity in vitro. Such specific results demonstrate the utility and robustness of this screening methodology. Structure-activity relationship analysis of the compounds identified a key hydroxy-napthaldehyde moiety that is necessary and sufficient for inhibitory activity. Preliminary studies using one of these compounds suggest that inhibition of sirtuins interferes with body axis formation in Arabidopsis.Namura S et al. ( 2001) Proceedings of the National Academy of Sciences of the United States of America 98 20 11569--11574Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia.
Brain subjected to acute ischemic attack caused by an arterial blockage needs immediate arterial recanalization. However, restoration of cerebral blood flow can cause tissue injury, which is termed reperfusion injury. It is important to inhibit reperfusion injury to achieve greater brain protection. Because oxidative stress has been shown to activate mitogen-activated protein kinases (MAPKs), and because oxidative stress contributes to reperfusion injury, MAPK may be a potential target to inhibit reperfusion injury after brain ischemia. Here, we demonstrate that reperfusion after forebrain ischemia dramatically increases phosphorylation level of extracellular signal-regulated kinase 2 (ERK2) in the gerbil hippocampus. In addition, i.v. administration of U0126 (100-200 mg/kg), a specific inhibitor of MEK (MAPK/ERK kinase), protects the hippocampus against forebrain ischemia. Moreover, treatment with U0126 at 3 h after ischemia significantly reduces infarct volume after transient (3 h) focal cerebral ischemia in mice. This protection is accompanied by reduced phosphorylation level of ERK2, substrates for MEK, in the damaged brain areas. Furthermore, U0126 protects mouse primary cultured cortical neurons against oxygen deprivation for 9 h as well as nitric oxide toxicity. These results provide further evidence for the role of MEK/ERK activation in brain injury resulting from ischemia/reperfusion, and indicate that MEK inhibition may increase the resistance of tissue to ischemic injury. View PublicationCatalog #: Product Name: 73522 U-0126 Catalog #: 73522 Product Name: U-0126 Lane ME et al. ( 2001) Cancer research 61 16 6170--6177A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells.
Recent studies have indicated that the development of cyclin-dependent kinase (cdk)2 inhibitors that deregulate E2F are a plausible pharmacological strategy for novel antineoplastic agents. We show here that 3-[1-(3H-Imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydro-indol-2-one (SU9516), a novel 3-substituted indolinone compound, binds to and selectively inhibits the activity of cdk2. This inhibition results in a time-dependent decrease (4-64%) in the phosphorylation of the retinoblastoma protein pRb, an increase in caspase-3 activation (5-84%), and alterations in cell cycle resulting in either a G(0)-G(1) or a G(2)-M block. We also report here cell line differences in the cdk-dependent phosphorylation of pRb. These findings demonstrate that SU9516 is a selective cdk2 inhibitor and support the theory that compounds that inhibit cdk2 are viable resources in the development of new antineoplastic agents.Catalog #: Product Name: 73452 SU9516 Catalog #: 73452 Product Name: SU9516 Items 97 to 108 of 7892 total
Shop ByFilter Results- Resource Type
-
- Reference 7892 items
- Product Type
-
- 24 items
- Area of Interest
-
- 11 items
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 5 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- 0 11 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 1 item
- EasySep 750 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 33 items
- MesenCult 133 items
- MethoCult 440 items
- MyeloCult 61 items
- MyoCult 2 items
- NeuroCult 350 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 77 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 20 items
- RosetteSep 252 items
- STEMdiff 47 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1447 items
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 12 items
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.