References
Items 889 to 900 of 7990 total
- Wada Y et al. (FEB 2007) Blood 109 3 1156--64
Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor.
The interleukin-12 (IL-12) cytokine induces the differentiation of naive T cells to the T helper cell type 1 (Th1) phenotype and is integral to the pathogenesis of Th1-mediated immunologic disorders. A more recently discovered IL-12 family member, IL-23, shares the p40 protein subunit with IL-12 and plays a critical role in the generation of effector memory T cells and IL-17-producing T cells. We introduce a novel compound, STA-5326, that down-regulates both IL-12 p35 and IL-12/IL-23 p40 at the transcriptional level, and inhibits the production of both IL-12 and IL-23 cytokines. Oral administration of STA-5326 led to a suppression of the Th1 but not Th2 immune response in mice. In vivo studies using a CD4+CD45Rbhigh T-cell transfer severe combined immunodeficiency (SCID) mouse inflammatory bowel disease model demonstrated that oral administration of STA-5326 markedly reduced inflammatory histopathologic changes in the colon. A striking decrease in interferon-gamma (IFN-gamma) production was observed in ex vivo culture of lamina propria cells harvested from animals treated with STA-5326, indicating a down-regulation of the Th1 response by STA-5326. These results suggest that STA-5326 has potential for use in the treatment of Th1-related autoimmune or immunologic disorders. STA-5326 currently is being evaluated in phase 2 clinical trials in patients with Crohn disease and rheumatoid arthritis.Catalog #: Product Name: 15028 RosetteSepâ„¢ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSepâ„¢ Human Monocyte Enrichment Cocktail Schenk S et al. (JAN 2007) Stem cells (Dayton, Ohio) 25 1 245--51Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor.
MSCs have received attention for their therapeutic potential in a number of disease states, including bone formation, diabetes, stem cell engraftment after marrow transplantation, graft-versus-host disease, and heart failure. Despite this diverse interest, the molecular signals regulating MSC trafficking to sites of injury are unclear. MSCs are known to transiently home to the freshly infarcted myocardium. To identify MSC homing factors, we determined chemokine expression pattern as a function of time after myocardial infarction (MI). We merged these profiles with chemokine receptors expressed on MSCs but not cardiac fibroblasts, which do not home after MI. This analysis identified monocyte chemotactic protein-3 (MCP-3) as a potential MSC homing factor. Overexpression of MCP-3 1 month after MI restored MSC homing to the heart. After serial infusions of MSCs, cardiac function improved in MCP-3-expressing hearts (88.7%, p textless .001) but not in control hearts (8.6%, p = .47). MSC engraftment was not associated with differentiation into cardiac myocytes. Rather, MSC engraftment appeared to result in recruitment of myofibroblasts and remodeling of the collagen matrix. These data indicate that MCP-3 is an MSC homing factor; local overexpression of MCP-3 recruits MSCs to sites of injured tissue and improves cardiac remodeling independent of cardiac myocyte regeneration.D'Amour KA et al. (NOV 2006) Nature biotechnology 24 11 1392--401Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.
Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.Catalog #: Product Name: 72072 Cyclopamine 72262 All-Trans Retinoic Acid Catalog #: 72072 Product Name: Cyclopamine Catalog #: 72262 Product Name: All-Trans Retinoic Acid Fukushima N et al. (JAN 2007) Neurochemistry international 50 2 302--7Lysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1-G(i/o) pathway.
Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates cortical development. Here we examined how LPA influences the cell fate of cortical neuroblasts using a neurosphere culture system. We generated neurospheres in the presence of basic fibroblast growth factor (bFGF). Treatment with LPA throughout the culture period significantly reduced the number of cells in the neurospheres. When dissociated single cells derived from neurospheres were induced to differentiate by adherence on coverslips, the proportion of MAP2-positive neurons was higher in LPA-treated neurospheres than in those treated with bFGF alone, and the proportion of myelin basic protein-positive oligodendrocytes was lower. Consistent with this finding, LPA raised the ratio of beta-tubulin type III-positive young neurons and reduced the ratio of CD140a-positive oligodendrocyte precursors in neurospheres. These effects of LPA were inhibited by pretreatment of neurospheres with pertussis toxin or an LPA(1)-preferring antagonist, Ki16425. Moreover, LPA-induced enhancement of neuronal differentiation was not observed in neurospheres derived from lpa(1)-null mice. These results suggest that LPA promotes the commitment of neuroblasts to the neural lineage through the LPA(1)-G(i/o) pathway.Catalog #: Product Name: 72692 1-Oleoyl Lysophosphatidic Acid Catalog #: 72692 Product Name: 1-Oleoyl Lysophosphatidic Acid Zakikhani M et al. ( 2006) Cancer research 66 21 10269--10273Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells.
Recent population studies provide clues that the use of metformin may be associated with reduced incidence and improved prognosis of certain cancers. This drug is widely used in the treatment of type 2 diabetes, where it is often referred to as an insulin sensitizer" because it not only lowers blood glucose but also reduces the hyperinsulinemia associated with insulin resistance. As insulin and insulin-like growth factors stimulate proliferation of many normal and transformed cell types�Catalog #: Product Name: 73252 Metformin Catalog #: 73252 Product Name: Metformin Tober J et al. (FEB 2007) Blood 109 4 1433--41The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis.
In the adult, platelets are derived from unipotential megakaryocyte colony-forming cells (Meg-CFCs) that arise from bipotential megakaryocyte/erythroid progenitors (MEPs). To better define the developmental origin of the megakaryocyte lineage, several aspects of megakaryopoiesis, including progenitors, maturing megakaryocytes, and circulating platelets, were examined in the murine embryo. We found that a majority of hemangioblast precursors during early gastrulation contains megakaryocyte potential. Combining progenitor assays with immunohistochemical analysis, we identified 2 waves of MEPs in the yolk sac associated with the primitive and definitive erythroid lineages. Primitive MEPs emerge at E7.25 along with megakaryocyte and primitive erythroid progenitors, indicating that primitive hematopoiesis is bilineage in nature. Subsequently, definitive MEPs expand in the yolk sac with Meg-CFCs and definitive erythroid progenitors. The first GP1bbeta-positive cells in the conceptus were identified in the yolk sac at E9.5, while large, highly reticulated platelets were detected in the embryonic bloodstream beginning at E10.5. At this time, the number of megakaryocyte progenitors begins to decline in the yolk sac and expand in the fetal liver. We conclude that the megakaryocyte lineage initially originates from hemangioblast precursors during early gastrulation and is closely associated both with primitive and with definitive erythroid lineages in the yolk sac prior to the transition of hematopoiesis to intraembryonic sites.Catalog #: Product Name: 04970 MegaCultâ„¢-C Complete Kit Without Cytokines 04900 MegaCultâ„¢-C Medium Without Cytokines 04960 MegaCultâ„¢-C Collagen and Medium Without Cytokines Catalog #: 04970 Product Name: MegaCultâ„¢-C Complete Kit Without Cytokines Catalog #: 04900 Product Name: MegaCultâ„¢-C Medium Without Cytokines Catalog #: 04960 Product Name: MegaCultâ„¢-C Collagen and Medium Without Cytokines Weisberg E et al. (MAR 2007) Blood 109 5 2112--20Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias.
Drug resistance resulting from emergence of imatinib-resistant BCR-ABL point mutations is a significant problem in advanced-stage chronic myelogenous leukemia (CML). The BCR-ABL inhibitor, nilotinib (AMN107), is significantly more potent against BCR-ABL than imatinib, and is active against many imatinib-resistant BCR-ABL mutants. Phase 1/2 clinical trials show that nilotinib can induce remissions in patients who have previously failed imatinib, indicating that sequential therapy with these 2 agents has clinical value. However, simultaneous, rather than sequential, administration of 2 BCR-ABL kinase inhibitors is attractive for many reasons, including the theoretical possibility that this could reduce emergence of drug-resistant clones. Here, we show that exposure of a variety of BCR-ABL+ cell lines to imatinib and nilotinib results in additive or synergistic cytotoxicity, including testing of a large panel of cells expressing BCR-ABL point mutations causing resistance to imatinib in patients. Further, using a highly quantifiable bioluminescent in vivo model, drug combinations were at least additive in antileukemic activity, compared with each drug alone. These results suggest that despite binding to the same site in the same target kinase, the combination of imatinib and nilotinib is highly efficacious in these models, indicating that clinical testing of combinations of BCR-ABL kinase inhibitors is warranted.Catalog #: Product Name: 04434 MethoCultâ„¢ H4434 Classic Catalog #: 04434 Product Name: MethoCultâ„¢ H4434 Classic Fujii H et al. (MAR 2007) Blood 109 5 2008--13In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides.
Despite considerable success in treating newly diagnosed childhood acute lymphoblastic leukemia (ALL), relapsed disease remains a significant clinical challenge. Using a NOD/SCID mouse xenograft model, we report that immunostimulatory DNA oligonucleotides containing CpG motifs (CpG ODNs) stimulate significant immune activity against primary human ALL cells in vivo. The administration of CpG ODNs induced a significant reduction in systemic leukemia burden, mediated continued disease control, and significantly improved survival of mice with established human ALL. The death of leukemia cells in vivo was independent of the ability of ALL cells to respond directly to CpG ODNs and correlated with the production of IL-12p70, IFN-alpha, and IFN-gamma by the host. In addition, depletion of natural killer cells by anti-asialo-GM1 treatment significantly reduced the in vivo antileukemic activity of CpG ODN. This antileukemia effect was not limited to the xenograft model because natural killer cell-dependent killing of ALL by human peripheral blood mononuclear cells (PBMCs) was also increased by CpG ODN stimulation. These results suggest that CpG ODNs have potential as therapeutic agents for the treatment of ALL.Chan SL et al. (FEB 2007) Stem cells (Dayton, Ohio) 25 2 529--36Enhanced in vivo homing of uncultured and selectively amplified cord blood CD34+ cells by cotransplantation with cord blood-derived unrestricted somatic stem cells.
Mesenchymal stem cells have been implicated as playing an important role in stem cell engraftment. Recently, a new pluripotent population of umbilical cord blood (UCB) cells, unrestricted somatic stem cells (USSCs), with intrinsic and directable potential to develop into mesodermal, endodermal, and ectodermal fates, has been identified. In this study, we evaluated the capacity of ex vivo expanded USSCs to influence the homing of UCB-derived CD34(+) cells into the marrow and spleen of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. USSCs induced a significant enhancement of CD34(+) cell homing to both bone marrow and spleen (2.2 +/- 0.3- and 2.4 +/- 0.6-fold, respectively; p textless .05), with a magnitude similar to that induced by USSCs that had been thawed prior to transplantation. The effect of USSCs was dose-dependent and detectable at USSC:CD34(+) ratios of 1:1 and above. Enhanced marrow homing by USSCs was unaltered by extensive culture passaging of the cells, as similar enhancement was observed for both early-passage (passage 5 [p5]) and late-passage (p10) USSCs. The homing effect of USSCs was also reflected in an increased proportion of NOD/SCID mice exhibiting significant human cell engraftment 6 weeks after transplantation, with a similar distribution of myeloid and lymphoid components. USSCs enhanced the homing of cellular products of ex vivo expanded UCB lineage-negative (lin(-)) cells, generated in 14-day cultures by Selective Amplification. The relative proportion of homing CD34(+) cells within the culture-expanded cell population was unaltered by USSC cotransplantation. Production of stromal-derived factor-1 (SDF-1) by USSCs was detected by both gene expression and protein released into culture media of these cells. Knockdown of SDF-1 production by USSCs using lentiviral-SiRNA led to a significant (p textless .05) reduction in USSC-mediated enhancement of CD34(+) homing. Our findings thus suggest a clinical potential for using USSCs in facilitating homing and engraftment for cord blood transplant recipients.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM Li J-M et al. (FEB 2007) Molecular endocrinology (Baltimore, Md.) 21 2 499--511Angiotensin II-induced neural differentiation via angiotensin II type 2 (AT2) receptor-MMS2 cascade involving interaction between AT2 receptor-interacting protein and Src homology 2 domain-containing protein-tyrosine phosphatase 1.
Angiotensin II (Ang II) type 2 (AT2) receptors are abundantly expressed not only in the fetal brain where they probably contribute to brain development, but also in pathological conditions to protect the brain against stroke; however, the detailed mechanisms are unclear. Here, we demonstrated that AT2 receptor signaling induced neural differentiation via an increase in MMS2, one of the ubiquitin-conjugating enzyme variants. The AT2 receptor, MMS2, Src homology 2 domain-containing protein-tyrosine phosphatase 1 (SHP-1), and newly cloned AT2 receptor-interacting protein (ATIP) were highly expressed in fetal rat neurons and declined after birth. Ang II induced MMS2 expression in a dose-dependent manner, reaching a peak after 4 h of stimulation, and this effect was enhanced with AT1 receptor blocker, valsartan, but inhibited by AT2 receptor blocker PD123319. Moreover, we observed that an AT2 receptor agonist, CGP42112A, alone enhanced MMS2 expression. Neurons treated with small interfering RNA of MMS2 failed to exhibit neurite outgrowth and synapse formation. Moreover, the increase in AT2 receptor-induced MMS2 mRNA expression was enhanced by overexpression of ATIP but inhibited by small interfering RNA of SHP-1 and overexpression of catalytically dominant-negative SHP-1 or a tyrosine phosphatase inhibitor, sodium orthovanadate. After AT2 receptor stimulation, ATIP and SHP-1 were translocated into the nucleus after formation of their complex. Furthermore, increased MMS2 expression mediates the inhibitor of DNA binding 1 proteolysis and promotes DNA repair. These results provide a new insight into the contribution of AT2 receptor stimulation to neural differentiation via transactivation of MMS2 expression involving the association of ATIP and SHP-1.Catalog #: Product Name: 05700 NeuroCultâ„¢ Basal Medium (Mouse & Rat) 05703 NeuroCultâ„¢ Differentiation Supplement (Mouse & Rat) 05704 NeuroCultâ„¢ Differentiation Kit (Mouse & Rat) Catalog #: 05700 Product Name: NeuroCultâ„¢ Basal Medium (Mouse & Rat) Catalog #: 05703 Product Name: NeuroCultâ„¢ Differentiation Supplement (Mouse & Rat) Catalog #: 05704 Product Name: NeuroCultâ„¢ Differentiation Kit (Mouse & Rat) Shih Y-RV et al. (NOV 2006) Stem cells (Dayton, Ohio) 24 11 2391--7Growth of mesenchymal stem cells on electrospun type I collagen nanofibers.
We reconstituted type I collagen nanofibers prepared by electrospin technology and examined the morphology, growth, adhesion, cell motility, and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) on three nano-sized diameters (50-200, 200-500, and 500-1,000 nm). Results from scanning electron microscopy showed that cells on the nanofibers had a more polygonal and flattened cell morphology. MTS (3-[4,5-dimethythiazol-2-yl]-5-[3-carboxy-methoxyphenyl]-2-[4-sul-fophenyl]-2H-tetrazolium compound) assay demonstrated that the MSCs grown on 500-1,000-nm nanofibers had significantly higher cell viability than the tissue culture polystyrene control. A decreased amount of focal adhesion formation was apparent in which quantifiable staining area of the cytoplasmic protein vinculin for the 200-500-nm nanofibers was 39% less compared with control, whereas the area of quantifiable vinculin staining was 45% less for both the 200-500-nm and 500-1,000-nm nanofibers. The distances of cell migration were quantified on green fluorescent protein-nucleofected cells and was 56.7%, 37.3%, and 46.3% for 50-200, 200-500, and 500-1,000 nm, respectively, compared with those on the control. Alkaline phosphatase activity demonstrated no differences after 12 days of osteogenic differentiation, and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed comparable osteogenic gene expression of osteocalcin, osteonectin, and ostepontin between cells differentiated on polystyrene and nanofiber surfaces. Moreover, single-cell RT-PCR of type I collagen gene expression demonstrated higher expression on cells seeded on the nanofibers. Therefore, type I collagen nanofibers support the growth of MSCs without compromising their osteogenic differentiation capability and can be used as a scaffold for bone tissue engineering to facilitate intramembranous bone formation. Further efforts are necessary to enhance their biomimetic properties.Catalog #: Product Name: 15027 RosetteSepâ„¢ Human Bone Marrow Progenitor Cell Pre-Enrichment Cocktail Catalog #: 15027 Product Name: RosetteSepâ„¢ Human Bone Marrow Progenitor Cell Pre-Enrichment Cocktail Miura Y et al. (NOV 2006) Stem cells (Dayton, Ohio) 24 11 2428--36Mesenchymal stem cell-organized bone marrow elements: an alternative hematopoietic progenitor resource.
Bone marrow-derived mesenchymal stem cells (BMMSCs) are multipotent postnatal stem cells that have been used for the treatment of bone defects and graft-versus-host diseases in clinics. In this study, we found that subcutaneously transplanted human BMMSCs are capable of organizing hematopoietic progenitors of recipient origin. These hematopoietic cells expressed multiple lineages of hematopoietic cell associated markers and were able to rescue lethally irradiated mice, with successful engraftment in the recipient, suggesting a potential bone marrow (BM) resource for stem cell therapies. Furthermore, we found that platelet-derived growth factor (PDGF) promotes the formation of BMMSC-generated BM niches through upregulation of beta-catenin, implying that the PDGF pathway contributes to the formation of ectopic BM. These results indicate that the BMMSC-organized BM niche system represents a unique hematopoietic progenitor resource possessing potential clinical value.Catalog #: Product Name: 03434 MethoCultâ„¢ GF M3434 04434 MethoCultâ„¢ H4434 Classic 09600 StemSpanâ„¢ SFEM Catalog #: 03434 Product Name: MethoCultâ„¢ GF M3434 Catalog #: 04434 Product Name: MethoCultâ„¢ H4434 Classic Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM Items 889 to 900 of 7990 total
Shop ByFilter Results- Resource Type
-
- Reference 7990 items
- Product Type
-
- 24 items
- Area of Interest
-
- 11 items
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 5 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 487 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- 0 11 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 1 item
- EasySep 751 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 33 items
- MesenCult 133 items
- MethoCult 440 items
- MyeloCult 61 items
- MyoCult 2 items
- NeuroCult 350 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 77 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 20 items
- RosetteSep 252 items
- STEMdiff 48 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1447 items
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 12 items
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 377 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.