References
Items 829 to 840 of 7990 total
- Liu H et al. (DEC 2006) Biomaterials 27 36 6004--14
Three-dimensional culture for expansion and differentiation of mouse embryonic stem cells.
Differentiation of embryonic stem (ES) cells typically requires cell-cell aggregation in the form of embryoid bodies (EBs). This process is not very well controlled and final cell numbers can be limited by EB agglomeration and the inability to drive differentiation towards a desired cell type. This study compares three-dimensional (3D) fibrin culture to conventional two-dimensional (2D) suspension culture and to culture in a semisolid methylcellulose medium solution. Two types of fibrin culture were evaluated, including a PEGylated fibrin gel. PEGylation with a difunctional PEG derivative retarded fibrinogen migration during through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as a result of crosslinking, similarly, degradation was slowed in the PEGylated gel. ES cell proliferation was higher in both the fibrin and PEGylated fibrin gels versus 2D and methylcellulose controls. FACS analysis and real-time-PCR revealed differences in patterns of differentiation for the various culture systems. Culture in PEGylated fibrin or methylcellulose culture demonstrated features characteristic of less extensive differentiation relative to fibrin and 2D culture as evidenced by the transcription factor Oct-4. Fibrin gels showed gene and protein expression similar to that in 2D culture. Both fibrin and 2D cultures demonstrated statistically greater cell numbers positive for the vascular mesoderm marker, VE-cadherin.Jiang J et al. (AUG 2006) Blood 108 3 1077--83cMYB is involved in the regulation of fetal hemoglobin production in adults.
A quantitative trait locus (QTL) controlling HbF levels has previously been mapped to chromosome 6q23 in an Asian-Indian kindred with beta thalassemia and heterocellular hereditary persistence of fetal hemoglobin (HPFH). Five protein-coding genes, ALDH8A1, HBS1L, cMYB, AHI1, and PDE7B reside in this 1.5-megabase (Mb) candidate interval of 6q23. To direct sequencing efforts we compared the expression profiles of these 5 genes between 12 individuals with elevated and 14 individuals with normal HbF levels during adult erythropoiesis by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Two genes, cMYB and HBS1L, demonstrated simultaneous transcriptional down-regulation in individuals with elevated HbF levels. Transfection of K562 cells encoding human cDNA of cMYB and HBS1L genes showed that, although overexpression of ectopic cMYB inhibited gamma-globin gene expression, overexpression of HBS1L had no effect. Low levels of cMYB were associated with low cell expansions, accelerated erythroid maturation, and higher number of macrophages in erythroid cell culture. These observations suggest that differences in the intrinsic levels of cMYB may account for some of the variation in adult HbF levels. The possible mechanism of cMYB influencing gamma- to beta-globin switching is discussed.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM T. E. Ludwig et al. (aug 2006) Nature methods 3 8 637--46Feeder-independent culture of human embryonic stem cells.
Feeder-independent culture of human embryonic stem cells.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Strom E et al. (SEP 2006) Nature chemical biology 2 9 474--9Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation.
p53-dependent apoptosis contributes to the side effects of cancer treatment, and genetic or pharmacological inhibition of p53 function can increase normal tissue resistance to genotoxic stress. It has recently been shown that p53 can induce apoptosis through a mechanism that does not depend on transactivation but instead involves translocation of p53 to mitochondria. To determine the impact of this p53 activity on normal tissue radiosensitivity, we isolated a small molecule named pifithrin-mu (PFTmu, 1) that inhibits p53 binding to mitochondria by reducing its affinity to antiapoptotic proteins Bcl-xL and Bcl-2 but has no effect on p53-dependent transactivation. PFTmu has a high specificity for p53 and does not protect cells from apoptosis induced by overexpression of proapoptotic protein Bax or by treatment with dexamethasone (2). PFTmu rescues primary mouse thymocytes from p53-mediated apoptosis caused by radiation and protects mice from doses of radiation that cause lethal hematopoietic syndrome. These results indicate that selective inhibition of the mitochondrial branch of the p53 pathway is sufficient for radioprotection in vivo.Catalog #: Product Name: 72802 Pifithrin-mu Catalog #: 72802 Product Name: Pifithrin-mu Bauer TR et al. (NOV 2006) Blood 108 10 3313--20Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy.
Canine leukocyte adhesion deficiency (CLAD) represents the canine counter-part of the human disease leukocyte adhesion deficiency (LAD). Defects in the leukocyte integrin CD18 adhesion molecule in both CLAD and LAD lead to recurrent, life-threatening bacterial infections. We evaluated ex vivo retroviral-mediated gene therapy in CLAD using 2 nonmyeloablative conditioning regimens--200 cGy total body irradiation (TBI) or 10 mg/kg busulfan--with or without posttransplantation immunosuppression. In 6 of 11 treated CLAD dogs, therapeutic levels of CD18(+) leukocytes were achieved. Conditioning with either TBI or busulfan allowed long-term engraftment, and immunosuppression was not required for efficacy. The percentage of CD18(+) leukocytes in the peripheral blood progressively increased over 6 to 8 months after infusion to levels ranging from 1.26% to 8.37% at 1-year follow-up in the 6 dogs. These levels resulted in reversal or moderation of the severe CLAD phenotype. Linear amplification-mediated polymerase chain reaction assays indicated polyclonality of insertion sites. These results describe ex vivo hematopoietic stem cell gene transfer in a disease-specific, large animal model using 2 clinically applicable conditioning regimens, and they provide support for the use of nonmyeloablative conditioning regimens in preclinical protocols of retroviral-mediated gene transfer for nonmalignant hematopoietic diseases such as LAD.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM Ulbrandt ND et al. (AUG 2006) Journal of Virology 80 16 7799--806Isolation and characterization of monoclonal antibodies which neutralize human metapneumovirus in vitro and in vivo
Human metapneumovirus (hMPV) is a recently described member of the Paramyxoviridae family/Pneumovirinae subfamily and shares many common features with respiratory syncytial virus (RSV), another member of the same subfamily. hMPV causes respiratory tract illnesses that, similar to human RSV, occur predominantly during the winter months and have symptoms that range from mild to severe cough, bronchiolitis, and pneumonia. Like RSV, the hMPV virus can be subdivided into two genetic subgroups, A and B. With RSV, a single monoclonal antibody directed at the fusion (F) protein can prevent severe lower respiratory tract RSV infection. Because of the high level of sequence conservation of the F protein across all the hMPV subgroups, this protein is likely to be the preferred antigenic target for the generation of cross-subgroup neutralizing antibodies. Here we describe the generation of a panel of neutralizing monoclonal antibodies that bind to the hMPV F protein. A subset of these antibodies has the ability to neutralize prototypic strains of both the A and B hMPV subgroups in vitro. Two of these antibodies exhibited high-affinity binding to the F protein and were shown to protect hamsters against infection with hMPV. The data suggest that a monoclonal antibody could be used prophylactically to prevent lower respiratory tract disease caused by hMPV.Catalog #: Product Name: 03800 ClonaCellâ„¢-HY Hybridoma Kit Catalog #: 03800 Product Name: ClonaCellâ„¢-HY Hybridoma Kit Wildum S et al. (AUG 2006) Journal of virology 80 16 8047--59Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection.
Human immunodeficiency virus type 1 (HIV-1) utilizes Vpu, Env, and Nef to down-modulate its primary CD4 receptor from the cell surface, and this function seems to be critical for the pathogenesis of AIDS. The physiological relevance of CD4 down-modulation, however, is currently not well understood. In the present study, we analyzed the kinetics of CD4 down-modulation and the susceptibility of HIV-1-infected T cells to superinfection using proviral HIV-1 constructs containing individual and combined defects in vpu, env, and nef and expressing red or green fluorescent proteins. T cells infected with HIV-1 mutants containing functional nef genes expressed low surface levels of CD4 from the first moment that viral gene expression became detectable. In comparison, Vpu and Env had only minor to moderate effects on CD4 during later stages of infection. Consistent with these quantitative differences, Nef inhibited superinfection more efficiently than Vpu and Env. Notably, nef alleles from AIDS patients were more effective in preventing superinfection than those derived from a nonprogressor of HIV-1 infection. Our data suggest that protection against X4-tropic HIV-1 superinfection involves both CD4-independent and CD4-dependent mechanisms of HIV-1 Nef. X4 was effectively down-regulated by simian immunodeficiency virus and HIV-2 but not by HIV-1 Nef proteins. Thus, maximal protection seems to involve an as-yet-unknown mechanism that is independent of CD4 or coreceptor down-modulation. Finally, we demonstrate that superinfected primary T cells show enhanced levels of apoptosis. Accordingly, one reason that HIV-1 inhibits CD4 surface expression and superinfection is to prevent premature cell death in order to expand the period of effective virus production.Catalog #: Product Name: 15022 RosetteSepâ„¢ Human CD4+ T Cell Enrichment Cocktail Catalog #: 15022 Product Name: RosetteSepâ„¢ Human CD4+ T Cell Enrichment Cocktail Ong CHP et al. (DEC 2006) American journal of physiology. Regulatory, integrative and comparative physiology 291 6 R1602--12Regulation of progranulin expression in myeloid cells.
Progranulin (pgrn; granulin-epithelin precursor, PC-cell-derived growth factor, or acrogranin) is a multifunctional secreted glycoprotein implicated in tumorigenesis, development, inflammation, and repair. It is highly expressed in macrophage and monocyte-derived dendritic cells. Here we investigate its regulation in myeloid cells. All-trans retinoic acid (ATRA) increased pgrn mRNA levels in myelomonocytic cells (CD34(+) progenitors; monoblastic U-937; monocytic THP-1; progranulocytic HL-60; macrophage RAW 264.7) but not in nonmyeloid cells tested. Interleukin-4 impaired basal expression of pgrn in U-937. Differentiation agents DMSO, and, in U-937 only, phorbol ester [phorbol 12-myristate,13-acetate (PMA)] elevated pgrn mRNA expression late in differentiation, suggestive of roles for pgrn in more mature terminally differentiated granulocyte/monocytes rather than during growth or differentiation. The response of pgrn mRNA to ATRA differs in U-937 and HL-60 lineages. In U-937, ATRA and chemical differentiation agents greatly increased pgrn mRNA stability, whereas, in HL-60, ATRA accelerated pgrn mRNA turnover. The initial upregulation of pgrn mRNA after stimulation with ATRA was independent of de novo protein synthesis in U-937 but not HL-60. Chemical blockade of nuclear factor-kappaB (NF-kappaB) activation impaired ATRA-stimulated pgrn expression in HL-60 but not U-937, whereas in U-937 it blocked PMA-induced pgrn mRNA expression, suggestive of cell-specific roles for NF-kappaB in determining pgrn mRNA levels. We propose that: 1) ATRA regulates pgrn mRNA levels in myelomonocytic cells; 2) ATRA acts in a cell-specific manner involving the differential control of mRNA stability and differential requirement for NF-kappaB signaling; and 3) elevated pgrn mRNA expression is characteristic of more mature cells and does not stimulate differentiation.Catalog #: Product Name: 04436 MethoCultâ„¢ SF H4436 04536 MethoCultâ„¢ SF H4536 Catalog #: 04436 Product Name: MethoCultâ„¢ SF H4436 Catalog #: 04536 Product Name: MethoCultâ„¢ SF H4536 Yañ et al. (NOV 2006) Stem cells (Dayton, Ohio) 24 11 2582--91Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease.
Previous studies have shown the relevance of bone marrow-derived MSCs (BM-MSCs) in controlling graft-versus-host disease (GVHD) after allogeneic transplantation. Since adipose tissue-derived MSCs (Ad-MSCs) may constitute a good alternative to BM-MSCs, we have expanded MSCs derived from human adipose tissue (hAd-MSCs) and mouse adipose tissue (mAd-MSCs), investigated the immunoregulatory properties of these cells, and evaluated their capacity to control GVHD in mice. The phenotype and immunoregulatory properties of expanded hAd-MSCs were similar to those of human BM-MSCs. Moreover, hAd-MSCs inhibited the proliferation and cytokine secretion of human primary T cells in response to mitogens and allogeneic T cells. Similarly, ex vivo expanded mAd-MSCs had an equivalent immunophenotype and exerted immunoregulatory properties similar to those of hAd-MSCs. Moreover, the infusion of mAd-MSCs in mice transplanted with haploidentical hematopoietic grafts controlled the lethal GVHD that occurred in control recipient mice. These findings constitute the first experimental proof that Ad-MSCs can efficiently control the GVHD associated with allogeneic hematopoietic transplantation, opening new perspectives for the clinical use of Ad-MSCs.Catalog #: Product Name: 05401 MesenCultâ„¢ MSC Basal Medium (Human) 05402 MesenCultâ„¢ MSC Stimulatory Supplement (Human) 05411 MesenCultâ„¢ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCultâ„¢ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCultâ„¢ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCultâ„¢ Proliferation Kit (Human) Griswold IJ et al. (AUG 2006) Molecular and cellular biology 26 16 6082--93Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib.
Kinase domain (KD) mutations of Bcr-Abl interfering with imatinib binding are the major mechanism of acquired imatinib resistance in patients with Philadelphia chromosome-positive leukemia. Mutations of the ATP binding loop (p-loop) have been associated with a poor prognosis. We compared the transformation potency of five common KD mutants in various biological assays. Relative to unmutated (native) Bcr-Abl, the ATP binding loop mutants Y253F and E255K exhibited increased transformation potency, M351T and H396P were less potent, and the performance of T315I was assay dependent. The transformation potency of Y253F and M351T correlated with intrinsic Bcr-Abl kinase activity, whereas the kinase activity of E255K, H396P, and T315I did not correlate with transforming capabilities, suggesting that additional factors influence transformation potency. Analysis of the phosphotyrosine proteome by mass spectroscopy showed differential phosphorylation among the mutants, a finding consistent with altered substrate specificity and pathway activation. Mutations in the KD of Bcr-Abl influence kinase activity and signaling in a complex fashion, leading to gain- or loss-of-function variants. The drug resistance and transformation potency of mutants may determine the outcome of patients on therapy with Abl kinase inhibitors.Catalog #: Product Name: 03236 MethoCultâ„¢ SF M3236 Catalog #: 03236 Product Name: MethoCultâ„¢ SF M3236 Yalcintepe L et al. (NOV 2006) Blood 108 10 3530--7Expression of interleukin-3 receptor subunits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice.
The interleukin-3 receptor (IL-3R) subunits are overexpressed on acute myeloid leukemia (AML) blasts compared with normal hematopoietic cells and are thus potential targets for novel therapeutic agents. Both fluorescence-activated cell sorter (FACS) analysis and quantitative real-time reverse transcription-polymerase chain reaction (QRT-PCR) were used to quantify expression of the IL-3Ralpha and beta(c) subunits on AML cells. QRT-PCR for both subunits was most predictive of killing of AML colony-forming cells (AML-CFCs) by diphtheria toxin-IL-3 fusion protein (DT(388)IL3). Among 19 patient samples, the relative level of the IL-3Ralpha was higher than the IL-3Rbeta(c) and highest in CD34(+)CD38(-)CD71(-) cells, enriched for candidate leukemia stem cells, compared with cell fractions depleted of such progenitors. Overall, the amount of IL-3Rbeta(c) subunit did not vary among sorted subpopulations. However, expression of both subunits varied by more than 10-fold among different AML samples for all subpopulations studied. The level of IL-3Rbeta(c) expression versus glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (set at 1000) ranged from 0.14 to 13.56 in CD34(+)CD38(-)CD71(-) cells from different samples; this value was correlated (r = .76, P = .05) with the ability of DT(388)IL3 to kill AML progenitors that engraft in beta(2)-microglobin-deficient nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice (n = 7). Thus, quantification of IL-3R subunit expression on AML blasts predicts the effectiveness IL-3R-targeted therapy in killing primitive leukemic progenitors.Inoue S et al. (AUG 2006) Cancer research 66 15 7741--7Inhibitory effects of B cells on antitumor immunity.
B-cell functions in antitumor immunity are not well understood. In this study, we evaluated the role of B cells in the development of antitumor immunity using Friend murine leukemia virus gag-expressing mouse EL-4 (EL-4 gag), D5 mouse melanoma, or MCA304 mouse sarcoma cells. To screen tumors for susceptibility to B-cell-deficient immune environments, spleen cells from naive C57BL/6 [wild-type (WT)] and B-cell knockout (BKO) mice were cultured with irradiated tumor cells in vitro. When cells were stimulated with EL-4 gag or D5 (but not MCA304 tumors), IFN-gamma production from CD8 T cells and natural killer cells was markedly decreased in WT compared with BKO cultures. IFN-gamma production was correlated with CD40 ligand expression on the tumor and inversely with interleukin-10 (IL-10) production by B cells. Sorted WT B cells produced more IL-10 than CD40 knockout (CD40KO) B cells when cocultured with EL-4 gag or D5 (but not MCA304). IFN-gamma production by BKO cells was reduced by the addition of sorted naive WT B cells (partially by CD40KO B cells) or recombinant mouse IL-10. In vivo tumor progression mirrored in vitro studies in that WT mice were unable to control tumor growth whereas EL-4 gag and D5 tumors (but not MCA304) were eliminated in BKO mice. Robust in vivo antitumor CTLs developed only in BKO tumor-challenged mice. Our studies provide the first mechanistic basis for the concept that B-cell depletion could therapeutically enhance antitumor immune responses to certain tumors by decreasing IL-10 production from B cells.Items 829 to 840 of 7990 total
Shop ByFilter Results- Resource Type
-
- Reference 7990 items
- Product Type
-
- 24 items
- Area of Interest
-
- 11 items
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 5 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 487 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- 0 11 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 1 item
- EasySep 751 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 33 items
- MesenCult 133 items
- MethoCult 440 items
- MyeloCult 61 items
- MyoCult 2 items
- NeuroCult 350 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 77 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 20 items
- RosetteSep 252 items
- STEMdiff 48 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1447 items
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 12 items
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 377 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.