References
Items 769 to 780 of 8037 total
- Arumugam TV et al. (JUN 2006) Nature medicine 12 6 621--3
Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke.
Mice transgenic for antisense Notch and normal mice treated with inhibitors of the Notch-activating enzyme gamma-secretase showed reduced damage to brain cells and improved functional outcome in a model of focal ischemic stroke. Notch endangers neurons by modulating pathways that increase their vulnerability to apoptosis, and by activating microglial cells and stimulating the infiltration of proinflammatory leukocytes. These findings suggest that Notch signaling may be a therapeutic target for treatment of stroke and related neurodegenerative conditions.Catalog #: Product Name: 73092 DBZ Catalog #: 73092 Product Name: DBZ Yoon BS et al. (APR 2006) Differentiation; research in biological diversity 74 4 149--59Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment.
Cell replacement therapy is a promising approach for the treatment of cardiac diseases. It is, however, challenged by a limited supply of appropriate cells. Therefore, we have investigated whether functional cardiomyocytes can be efficiently generated from human embryonic stem cells (hESCs). In this study, we developed an efficient protocol for the generation of functional cardiomyocytes from hESCs by combining hanging drop culture and 5-azacytidine, a well-known demethylating agent, and then evaluated the expression of cardiac-specific markers. hESCs were cultured both in the medium without or with 0.1, 1, or 10 microM of 5-azacytidine under a hanging drop culture. The expression of several cardiac-specific markers was determined by real-time PCR, RT-PCR, immunofluorescence, and confocal microscopy. To verify the structural and functional properties of hESC-derived cardiomyocytes, we performed electron microscopy and electrophysiological recording. The efficiency of beating cell generation was significantly improved in the hanging drop culture compared with that in suspension culture. Treatment of hESCs with 0.1 microM of 5-azacytidine for 1-3 days significantly increased the number of beating cells and simultaneously enhanced the expression of cardiac-specific markers. Transmission electron microscopy and electrophysiological recording showed that hESC-derived cardiomyocytes acquired structural and functional properties of cardiomyocytes. In conclusion, these results suggest that differentiation of hESCs into cardiomyocytes can be enhanced by the combination of hanging drop culture and 5-azacytidine treatment. Also the methylation status of genes related to cardiomyocyte development may play an important role in the differentiation of hESCs into cardiomyocytes.Catalog #: Product Name: 72012 5-Azacytidine Catalog #: 72012 Product Name: 5-Azacytidine Tsang JY-S et al. (JUL 2006) Journal of leukocyte biology 80 1 145--51Altered proximal T cell receptor (TCR) signaling in human CD4+CD25+ regulatory T cells.
CD4+CD25+ regulatory T cells play an important role in peripheral tolerance. Upon T cell receptor (TCR)-mediated activation, the cells fail to proliferate but are induced to have a suppressor function. The intracellular signaling events that lead to their responses have not been elucidated. In this study, we have examined the proximal TCR signaling events in freshly isolated human CD4+CD25+ regulatory T cells after TCR ligation. In contrast to CD4+CD25- T cells, TCR ligation of CD4+CD25+ regulatory T cells by anti-CD3 cross-linking resulted in a lower calcium influx and extracellular signal-regulated kinase 1/2 phosphorylation. Examination of the CD3zeta chain phosphorylation status indicated that CD4+CD25+ regulatory T cells have poor phosphorylation of the protein and consequently, reduced recruitment of zeta-associated protein-70 to the TCR immunoreceptor tyrosine motif. The adaptor protein, Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa, which relays signals to downstream signaling components, also showed reduced phosphorylation, which correlated with reduced VAV guanine nucleotide exchange factors association. Consistent with other findings, the defect is accompanied with impaired actin cap formation, implicating a failure of actin remodeling of the cells. Together, our results demonstrate that CD4+CD25+ regulatory T cells have altered TCR proximal signaling pathways, which could be critical for inducing the distinct behavior of these cells.Catalog #: Product Name: 15022 RosetteSepâ„¢ Human CD4+ T Cell Enrichment Cocktail Catalog #: 15022 Product Name: RosetteSepâ„¢ Human CD4+ T Cell Enrichment Cocktail Russo FP et al. (MAY 2006) Gastroenterology 130 6 1807--21The bone marrow functionally contributes to liver fibrosis.
BACKGROUND & AIMS: Bone marrow (BM) cells may transdifferentiate into or fuse with organ parenchymal cells. BM therapy shows promise in murine models of cirrhosis, and clinical trials of bone marrow stem cell therapy for organ healing are underway. However, the BM may contribute to scar-forming myofibroblasts in various organs including the liver. We have studied this axis of regeneration and scarring in murine models of cirrhosis, including an assessment of the temporal and functional contribution of the BM-derived myofibroblasts. METHODS: Female mice were lethally irradiated and received male BM transplants. Carbon tetrachloride or thioacetamide was used to induce cirrhosis. BM-derived cells were tracked through in situ hybridization for the Y chromosome. BM transplants from 2 strains of transgenic mice were used to detect intrahepatic collagen production. RESULTS: In the cirrhotic liver, the contribution of BM to parenchymal regeneration was minor (0.6%); by contrast, the BM contributed significantly to hepatic stellate cell (68%) and myofibroblast (70%) populations. These BM-derived cells were found to be active for collagen type 1 transcription in 2 independent assays and could influence the fibrotic response to organ injury. These BM-derived myofibroblasts did not occur through cell fusion between BM-derived cells and indigenous hepatic cells but, instead, originated largely from the BM's mesenchymal stem cells. CONCLUSIONS: The BM contributes functionally and significantly to liver fibrosis and is a potential therapeutic target in liver fibrosis. Clinical trials of BM cell therapy for liver regeneration should be vigilant for the possibility of enhanced organ fibrosis.Molinero LL et al. (MAR 2006) Human immunology 67 3 170--82Intracellular expression of MICA in activated CD4 T lymphocytes and protection from NK cell-mediated MICA-dependent cytotoxicity.
MICA is a stress-regulated molecule recognized by the NK cell-activating receptor NKG2D. Previously, we demonstrated that MICA is induced on activated T cells but regulation by mitogenic cytokines and its biological consequences remain unexplored. Here, we show that IL-2, IL-4, and IL-15 but not TNF-alpha or IFN-alpha induced MICA expression in T lymphocytes present in peripheral blood mononuclear cells (PBMCs), as assessed by Western blot. IL-2 effect involved Jak3/STAT5, p38 MAPK, p70(56) kinase, Lck/fyn kinases, and NF-kappaB. MICA expression was also observed in Th1 and Th2 cells. However, surface expression was not detected. T lymphocytes present in PBMCs and isolated CD4+ T lymphocytes stimulated with phorbol-12-myristate-13-acetate and ionomycin also induced MICA expression as assessed by Western blot, but only low levels were expressed at the cell surface. Activated but not resting CD4+ T lymphocytes were lysed by IL-15- or IL-2-stimulated NK cells, and susceptibility was increased when HLA class I molecules were blocked. Also, cytokine-stimulated NK cells produced more IFN-gamma after culture with activated CD4+ T lymphocytes. However, the participation of MICA in these responses, if any, was marginal. Confocal microscopy revealed that MICA is retained mostly inside activated CD4+ T cells. Our results suggest that low surface expression of MICA on activated CD4+ T lymphocytes might be a safeguard mechanism to protect them from NK cells in an inflammatory, virus-infected, or tumor microenvironment, where NK and activated CD4+ T cells are recruited.Catalog #: Product Name: 15022 RosetteSepâ„¢ Human CD4+ T Cell Enrichment Cocktail 15025 RosetteSepâ„¢ Human NK Cell Enrichment Cocktail Catalog #: 15022 Product Name: RosetteSepâ„¢ Human CD4+ T Cell Enrichment Cocktail Catalog #: 15025 Product Name: RosetteSepâ„¢ Human NK Cell Enrichment Cocktail Dykstra B et al. (MAY 2006) Proceedings of the National Academy of Sciences of the United States of America 103 21 8185--90High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal.
To search for new indicators of self-renewing hematopoietic stem cells (HSCs), highly purified populations were isolated from adult mouse marrow, micromanipulated into a specially designed microscopic array, and cultured for 4 days in 300 ng/ml Steel factor, 20 ng/ml IL-11, and 1 ng/ml flt3-ligand. During this period, each cell and its progeny were imaged at 3-min intervals by using digital time-lapse photography. Individual clones were then harvested and assayed for HSCs in mice by using a 4-month multilineage repopulation endpoint (textgreater1% contribution to lymphoid and myeloid lineages). In a first experiment, 6 of 14 initial cells (43%) and 17 of 61 clones (28%) had HSC activity, demonstrating that HSC self-renewal divisions had occurred in vitro. Characteristics associated with HSC activity included longer cell-cycle times and the absence of uropodia on a majority of cells within the clone during the final 12 h of culture. Combining these criteria maximized the distinction of clones with HSC activity from those without and identified a subset of 27 of the 61 clones. These 27 clones included all 17 clones that had HSC activity; a detection efficiency of 63% (2.26 times more frequently than in the original group). The utility of these characteristics for discriminating HSC-containing clones was confirmed in two independent experiments where all HSC-containing clones were identified at a similar 2- to 3-fold-greater efficiency. These studies illustrate the potential of this monitoring system to detect new features of proliferating HSCs that are predictive of self-renewal divisions.Encinas JM et al. (MAY 2006) Proceedings of the National Academy of Sciences of the United States of America 103 21 8233--8Fluoxetine targets early progenitor cells in the adult brain.
Chronic treatment with antidepressants increases neurogenesis in the adult hippocampus. This increase in the production of new neurons may be required for the behavioral effects of antidepressants. However, it is not known which class of cells within the neuronal differentiation cascade is targeted by the drugs. We have generated a reporter mouse line, which allows identification and classification of early neuronal progenitors. It also allows accurate quantitation of changes induced by neurogenic agents in these distinct subclasses of neuronal precursors. We use this line to demonstrate that the selective serotonin reuptake inhibitor antidepressant fluoxetine does not affect division of stem-like cells in the dentate gyrus but increases symmetric divisions of an early progenitor cell class. We further demonstrate that these cells are the sole class of neuronal progenitors targeted by fluoxetine in the adult brain and suggest that the fluoxetine-induced increase in new neurons arises as a result of the expansion of this cell class. This finding defines a cellular target for antidepressant drug therapies.Baens M et al. (MAY 2006) Cancer research 66 10 5270--7Selective expansion of marginal zone B cells in Emicro-API2-MALT1 mice is linked to enhanced IkappaB kinase gamma polyubiquitination.
The translocation t(11;18)(q21;q21) that generates an API2-MALT1 fusion protein is the most common structural abnormality among the genetic defects reported in mucosa-associated lymphoid tissue (MALT)-type lymphomas, and its presence correlates with the apparent lack of further genetic instability or chromosomal imbalances. Hence, constitutive nuclear factor-kappaB (NF-kappaB) activation induced by the API2-MALT1 fusion protein is considered essential for B-cell transformation. To examine its role in B-cell development and lymphomagenesis, Emu-API2-MALT1 transgenic mice were produced. Our data show that expression of the API2-MALT1 fusion protein alone is not sufficient for the development of lymphoma masses within 50 weeks. Nevertheless, API2-MALT1 expression affected B-cell maturation in the bone marrow and triggered the specific expansion of splenic marginal zone B cells. Polyubiquitination of IkappaB kinase gamma (IKKgamma), indicative for enhanced NF-kappaB activation, was increased in splenic lymphocytes and promoted the survival of B cells ex vivo. In addition, we show that the API2-MALT1 fusion resided in the cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts. We provide evidence that association of the MALT1 COOH terminal with the lipid rafts, which is mediated by the API2 portion, is sufficient to trigger NF-kappaB activation via enhanced polyubiquitination of IKKgamma. Taken together, these data support the hypothesis that the API2-MALT1 fusion protein can contribute to MALT lymphoma formation via increased NF-kappaB activation.Catalog #: Product Name: 03630 MethoCultâ„¢ M3630 Catalog #: 03630 Product Name: MethoCultâ„¢ M3630 Tsuboi S (JUN 2006) Journal of immunology (Baltimore, Md. : 1950) 176 11 6576--85A complex of Wiskott-Aldrich syndrome protein with mammalian verprolins plays an important role in monocyte chemotaxis.
The Wiskott-Aldrich syndrome protein (WASP) is a product of the gene defective in an Xid disorder, Wiskott-Aldrich syndrome. WASP expression is limited to hemopoietic cells, and WASP regulates the actin cytoskeleton. It has been reported that monocytes/macrophages from WASP-deficient Wiskott-Aldrich syndrome patients are severely defective in chemotaxis, resulting in recurrent infection. However, the molecular basis of such chemotactic defects is not understood. Recently, the WASP N-terminal region was found to bind to the three mammalian verprolin homologs: WASP interacting protein (WIP); WIP and CR16 homologous protein (WICH)/WIP-related protein (WIRE); and CR16. Verprolin was originally found to play an important role in the regulation of actin cytoskeleton in yeast. We have shown that WASP, WIP, and WICH/WIRE are expressed predominantly in the human monocyte cell line THP-1 and that WIP and WICH/WIRE are involved in monocyte chemotaxis. When WASP binding to verprolins was blocked, chemotactic migration of monocytes was impaired in both THP-1 cells and primary human monocytes. Increased expression of WASP and WIP enhanced monocyte chemotaxis. Blocking WASP binding to verprolins impaired cell polarization but not actin polymerization. These results indicate that a complex of WASP with mammalian verprolins plays an important role in chemotaxis of monocytes. Our results suggest that WASP and mammalian verprolins function as a unit in monocyte chemotaxis and that the activity of this unit is critical to establish cell polarization. In addition, our results also indicate that the WASP-verprolin complex is involved in other functions such as podosome formation and phagocytosis.Catalog #: Product Name: 15028 RosetteSepâ„¢ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSepâ„¢ Human Monocyte Enrichment Cocktail Swainson L et al. (JUN 2006) Journal of immunology (Baltimore, Md. : 1950) 176 11 6702--8IL-7R alpha gene expression is inversely correlated with cell cycle progression in IL-7-stimulated T lymphocytes.
IL-7 plays a major role in T lymphocyte homeostasis and has been proposed as an immune adjuvant for lymphopenic patients. This prospect is based, at least in part, on the short-term expansion of peripheral T cells in rIL7-treated mice and primates. Nevertheless, in vivo, following initial increases in T cell proliferation and numbers, lymphocytes return to a quiescent state. As the bases for this cell cycle exit have not yet been elucidated, it is important to assess the long-term biological effects of IL-7 on quiescent human T lymphocyte subsets. In this study, we find that IL-7-stimulated CD4+ naive lymphocytes enter into cell cycle with significantly delayed kinetics as compared with the memory population. Importantly though, these lymphocytes exit from the cell cycle despite the continuous replenishment of rIL-7. This response is distinct in memory and naive CD4+ lymphocytes with memory cells starting to exit from cycle by day 10 vs day 18 for naive cells. Return to quiescence is associated with a cessation in IL-7R signaling as demonstrated by an abrogation of STAT-5 phosphorylation, despite an up-regulation of surface IL-7Ralpha. Indeed, an initial 10-fold decrease in IL-7Ralpha mRNA levels is followed by increased IL-7Ralpha expression in naive as well as memory T cells, with kinetics paralleling cell cycle exit. Altogether, our data demonstrate that IL-7 promotes the extended survival of both naive and memory CD4+ T cells, whereas cycling of these two subsets is distinct and transient. Thus, IL-7 therapy should be designed to allow optimal responsiveness of naive and memory T cell subsets.Catalog #: Product Name: 15022 RosetteSepâ„¢ Human CD4+ T Cell Enrichment Cocktail Catalog #: 15022 Product Name: RosetteSepâ„¢ Human CD4+ T Cell Enrichment Cocktail Braun BS et al. (SEP 2006) Blood 108 6 2041--4Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo.
Somatic activation of a conditional targeted Kras(G12D) allele induces a fatal myeloproliferative disease in mice that closely models juvenile and chronic myelomonocytic leukemia. These mice consistently develop severe and progressive anemia despite adequate numbers of clonogenic erythroid progenitors in the bone marrow and expanded splenic hematopoiesis. Ineffective erythropoiesis is characterized by impaired differentiation. These results demonstrate that endogenous levels of oncogenic Ras have cell lineage-specific effects and support efforts to modulate Ras signaling for therapy of anemia in patients with myelodysplastic syndromes and myeloproliferative disorders.Catalog #: Product Name: 03234 MethoCultâ„¢ M3234 Catalog #: 03234 Product Name: MethoCultâ„¢ M3234 Chen X et al. (SEP 2006) Stem cells (Dayton, Ohio) 24 9 2052--9Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells.
Supplementation of mesenchymal stem cells (MSCs) during hematopoietic stem cell (HSC) transplantation alleviates complications such as graft-versus-host disease, leading to a speedy recovery of hematopoiesis. To meet this clinical demand, a fast MSC expansion method is required. In the present study, we examined the feasibility of using a rotary bioreactor system to expand MSCs from isolated bone marrow mononuclear cells. The cells were cultured in a rotary bioreactor with Myelocult medium containing a combination of supplementary factors, including stem cell factor and interleukin-3 and -6. After 8 days of culture, total cell numbers, Stro-1(+)CD44(+)CD34(-) MSCs, and CD34(+)CD44(+)Stro-1(-) HSCs were increased 9-, 29-, and 8-fold, respectively. Colony-forming efficiency-fibroblast per day of the bioreactor-treated cells was 1.44-fold higher than that of the cells without bioreactor treatment. The bioreactor-expanded MSCs showed expression of primitive MSC markers endoglin (SH2) and vimentin, whereas markers associated with lineage differentiation, including osteocalcin (osteogenesis), type II collagen (chondrogenesis), and C/EBP-alpha (CCAAT/enhancer-binding protein-alpha) (adipogenesis), were not detected. Upon induction, the bioreactor-expanded MSCs were able to differentiate into osteoblasts, chondrocytes, and adipocytes. We conclude that the rotary bioreactor with the modified Myelocult medium reported in this study may be used to rapidly expand MSCs.Catalog #: Product Name: 05100 MyeloCultâ„¢ H5100 Catalog #: 05100 Product Name: MyeloCultâ„¢ H5100 Items 769 to 780 of 8037 total
Shop ByFilter Results- Resource Type
-
- Reference 8037 items
- Product Type
-
- 24 items
- Area of Interest
-
- 11 items
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 5 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 487 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- 0 11 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 1 item
- EasySep 751 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 33 items
- MesenCult 133 items
- MethoCult 440 items
- MyeloCult 61 items
- MyoCult 2 items
- NeuroCult 350 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 77 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 20 items
- RosetteSep 252 items
- STEMdiff 48 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1447 items
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 12 items
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 377 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2026 º£½ÇÆÆ½â°æ. All rights reserved.