Product Information
Items 997 to 1008 of 13914 total
- ReferenceH. Shin et al. (Aug 2025) PLOS One 20 8
Skin irritation testing using human iPSCs derived 3D skin equivalent model
Artificial skin models have emerged as valuable tools for evaluating cosmetic ingredients and developing treatments for skin regeneration. Among them, 3D skin equivalent models (SKEs) using human primary skin cells are widely utilized and supported by standardized testing guidelines. However, primary cells face limitations such as restricted donor availability and challenges in conducting genotype-specific studies. To overcome these issues, recent approaches have focused on differentiating skin cells from human-induced pluripotent stem cells (hiPSCs). In this study, we developed a protocol to differentiate high-purity skin cells, such as fibroblasts (hFIBROs) and keratinocytes (hKERAs), from hiPSCs. To construct the hiPSC-derived SKE (hiPSC-SKE), a dermis was first formed by culturing a collagen and hFIBROs mixture within an insert. Subsequently, hKERAs were seeded onto the dermis, and keratinization was induced under air-liquid culture conditions to establish an epidermis. Histological analysis with hematoxylin and eosin staining confirmed that the hiPSC-SKE recapitulated the layered architecture of native human skin and expressed appropriate epidermal and dermal markers. Moreover, exposure to Triton X-100, a known skin irritant, led to marked epidermal damage and significantly reduced cell viability, validating the model’s functional responsiveness. These findings indicate that the hiPSC-SKE model represents a promising alternative for various skin-related applications, including the replacement of animal testing.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 ReferenceW. Y. Leong et al. (Aug 2025) PLOS Genetics 21 8RAB23 loss-of-function mutation causes context-dependent ciliopathy in Carpenter syndrome
The primary cilium is a signal transduction organelle whose dysfunction clinically causes ciliopathies in humans. RAB23 is a small GTPase known to regulate the Hedgehog signalling pathway and ciliary trafficking. Mutations of RAB23 in humans lead to Carpenter syndrome (CS), an autosomal recessive disorder clinically characterized by craniosynostosis, polysyndactyly, skeletal defects, obesity, and intellectual disability. Although the clinical features of CS bear some resemblance to those of ciliopathies, the exact relationship between the pathological manifestations of CS and the ciliary function of RAB23 remains ambiguous. Besides, the in vivo ciliary functions of RAB23 remain poorly characterised. Here, we demonstrate in vivo and in vitro Rab23 loss-of-function mutants modelling CS, including Rab23 conditional knockout (CKO) mouse mutants, CS patient-derived induced pluripotent stem cells (iPSCs), and zebrafish morphants. The Rab23-CKO mutants exhibit multiple developmental and phenotypical traits recapitulating the clinical features of human ciliopathies and CS, indicating a causal link between the loss of Rab23 and ciliopathy. In line with the ciliopathy-like phenotypes, all three different vertebrate mutant models consistently show a perturbation of primary cilia formation, intriguingly, in a context-dependent manner. Rab23-CKO mutants reveal cell-type specific ciliary abnormalities in chondrocytes, mouse embryonic fibroblasts, neural progenitor cells and neocortical neurons, but not in epithelial cells, cerebellar granule cells and hippocampus neurons. A profound reduction in ciliation frequency was observed specifically in neurons differentiated from CS patient iPSCs, whereas the patients’ fibroblasts, iPSCs and neural progenitor cells maintained normal ciliation percentages but shortened cilia length. Furthermore, Rab23-KO neural progenitor cells show perturbed ciliation and desensitized to primary cilium-dependent activation of the Hedgehog signaling pathway. Collectively, these findings indicate that the absence of RAB23 causes dysfunctional primary cilia in a cell-type distinctive manner, which underlies the pathological manifestations of CS. Our findings present the first in vivo evidence validating the unique context-specific function of RAB23 in the primary cilium. Through the use of patient-derived iPSCs differentiated cells, we present direct evidence of primary cilia anomalies in CS, thereby confirming CS as a ciliopathy disorder. Author summaryRAB23 mutations lead to Carpenter syndrome (CS), which manifests multiple clinical features resembling those of ciliopathies, a spectrum of disorders caused by defective primary cilia. However, the in vivo ciliary functions of RAB23 remain ambiguous. We established multiple Rab23 loss-of-function mutants, including conditional knockout (CKO) mouse mutants, CS patient-derived induced pluripotent stem cells (iPSCs), and zebrafish morphants. These mutant models consistently show context-dependent primary cilia anomalies. Rab23-CKO mutants display profound ciliary abnormalities in neocortical neurons, but not in epithelial cells, cerebellar granule cells and hippocampus neurons. Aberrant cilia formation and shortened cilia were observed in the neurons and neural progenitor cells derived from CS patient iPSCs. Furthermore, Rab23-KO neural progenitor cells exhibit impeded primary cilium-dependent Hedgehog signaling pathway transduction. Our findings suggest that the cell-type distinctive dysfunctional primary cilia may underlie the pathological manifestations of CS. We present the first in vivo evidence validating the unique context-specific function of RAB23 in the primary cilium. The results from patient-derived iPSCs differentiated cells reveal direct evidence of primary cilia anomalies in CS, confirming CS as a ciliopathy disorder.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 ReferenceG. R. Kelkar et al. (Aug 2025) Frontiers in Cell and Developmental Biology 13 1A human Angelman Syndrome class II pluripotent stem cell line with fluorescent paternal UBE3A reporter
IntroductionAngelman Syndrome (AS) is characterized in large part by the loss of functional UBE3A protein in mature neurons. A majority of AS etiologies is linked to deletion of the maternal copy of the UBE3A gene and epigenetic silencing of the paternal copy. A common therapeutic strategy is to unsilence the intact paternal copy thereby restoring UBE3A levels. Identifying novel therapies has been aided by a UBE3A-YFP reporter mouse model. This study presents an analogous fluorescent UBE3A reporter system in human cells.MethodsPreviously derived induced Pluripotent Stem Cells (iPSCs) with a Class II large deletion at the UBE3A locus are used in this study. mGL and eGFP are integrated downstream of the endogenous UBE3A using CRISPR/Cas9. These reporter iPSCs are differentiated into 2D and 3D neural cultures to monitor long-term neuronal maturation. Green fluorescence dynamics are analyzed by immunostaining and flow cytometry.ResultsThe reporter is successfully integrated into the genome and reports paternal UBE3A expression. Fluorescence expression gradually reduces with UBE3A silencing in neurons as they mature. Expression patterns also reflect expected responses to molecules known to reactivate paternal UBE3A.DiscussionThis human-cell-based model can be used to screen novel therapeutic candidates, facilitate tracking of UBE3A expression in time and space, and study human-specific responses. However, its ability to restore UBE3A function cannot be studied using this model. Further research in human cells is needed to engineer systems with functional UBE3A to fully capture the therapeutic capabilities of novel candidates.Catalog #: Product Name: 100-0276 mTeSRâ„¢ Plus Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus ReferenceH. Kearney et al. (Sep 2025) Stem Cell Reviews and Reports 21 8Dimethyl Sulfoxide Conditions Induced Pluripotent Stem Cells for more Efficient Nephron Progenitor and Kidney Organoid Differentiation
The field of human induced pluripotent stem cells (hiPSCs) has seen significant progress since the discovery of reprogramming somatic cells using the transcription factors Oct4, Sox2, Klf4, and c-Myc. hiPSCs are similar to embryonic stem cells in a primed state of pluripotency and have the potential to differentiate into any adult human cell type, offering a versatile tool for research and potential therapeutic applications. However, the efficiency of differentiation protocols for generating complex structures with multiple cell types, Like kidney organoids, remains a challenge. This study investigates the impact of treating hiPSCs with a low-dose dimethyl sulfoxide to enhance kidney organoid differentiation using the stepwise 2D monolayer-based protocol developed by Morizane et al. 2017. We found that treating hiPSCs with 1–2% DMSO affects gene expression of pluripotent transcription factors, the epigenetic landscape, and hiPSC colony morphology. Our findings also suggest DMSO treatment enhances the expression of the key metanephric mesenchyme nephron progenitor marker, SIX2 after 9 days of kidney organoid differentiation and helps improve hiPSC differentiation protocol efficiency toward the development of tubular kidney organoids. Further research is needed to fully elucidate the mechanisms underlying these effects and refine the differentiation process for potential in vitro research applications in biomedical research and drug development.Graphical Abstract Supplementary InformationThe online version contains supplementary material available at 10.1007/s12015-025-10971-z.Catalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus ReferenceM. Moradi et al. (Sep 2025) Nature Communications 16Munc13-1 restoration mitigates presynaptic pathology in spinal muscular atrophy
Degeneration of neuromuscular synapses is a key pathological feature of spinal muscular atrophy (SMA), yet cellular mechanisms underlying synapse dysfunction remain elusive. Here, we show that pharmacological stimulation with Roscovitine triggers the assembly of Munc13-1 release sites that relies on its local translation. Our findings show that presynaptic mRNA levels and local synthesis of Munc13-1 are diminished in motoneurons from SMA mice and hiPSC-derived motoneurons from SMA patients. Replacement of the Munc13-1 3’UTR with that of Synaptophysin1 rescues Munc13-1 mRNA transport in SMA motoneurons and restores the nanoscale architecture of presynaptic Munc13-1 release sites. Restoration of Munc13-1 levels leads to functional synaptic recovery in cultured SMA motoneurons. Furthermore, SMA mice cross-bred with a conditional knock-in mouse expressing modified Munc13-1 with a heterologous 3’UTR display attenuated synapse and neurodegeneration and improved motor function. Identifying Munc13-1 as an SMA modifier underscores the potential of targeting synapses to mitigate neuromuscular dysfunction in SMA. Defective neurotransmission is a hallmark of spinal muscular atrophy (SMA). Here, the authors show that local presynaptic Munc13-1synthesis is defective in SMA and that modification of the Munc13-1 mRNA rescues presynaptic architecture and excitability.Catalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus ReferenceY. Inoue et al. (Oct 2025) Acta Neuropathologica 150 1Impact of APOE on cerebrovascular lipid profile in Alzheimer’s disease
Disturbances within the cerebrovascular system substantially contribute to the pathogenesis of age-related cognitive impairment and Alzheimer’s disease (AD). Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-β (Aβ) in the leptomeningeal and cortical arteries and is highly prevalent in AD, affecting over 90% of cases. While the ε4 allele of apolipoprotein E ( APOE ) represents the strongest genetic risk factor for AD, it is also associated with cerebrovascular dysregulations. APOE plays a crucial role in brain lipid transport, particularly in the trafficking of cholesterol and phospholipids. Lipid metabolism is increasingly recognized as a critical factor in AD pathogenesis. However, the precise mechanism by which APOE influences cerebrovascular lipid signatures in AD brains remains unclear. In this study, we conducted non-targeted lipidomics on cerebral vessels isolated from the middle temporal cortex of 89 postmortem human AD brains, representing varying degrees of CAA and different APOE genotypes: APOE ε2/ε3 (N = 9), APOE ε2/ε4 (N = 14), APOE ε3/ε3 (N = 21), APOE ε3/ε4 (N = 23), and APOE ε4/ε4 (N = 22). Lipidomics detected 10 major lipid classes with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) being the most abundant lipid species. While we observed a positive association between age and total acyl-carnitine (CAR) levels (p = 0.0008), the levels of specific CAR subclasses were influenced by the APOE ε4 allele. Notably, APOE ε4 was associated with increased PE (p = 0.049) and decreased sphingomyelin (SM) levels (p = 0.028) in the cerebrovasculature. Furthermore, cerebrovascular Aβ40 and Aβ42 levels showed associations with sphingolipid levels including SM (p = 0.0079) and ceramide (CER) (p = 0.024). Weighted correlation network analysis revealed correlations between total tau and phosphorylated tau and lipid clusters enriched for PE plasmalogen and lysoglycerophospholipids. Taken together, our results suggest that cerebrovascular lipidomic profiles offer novel insights into the pathogenic mechanisms of AD, with specific lipid alterations potentially serving as biomarkers or therapeutic targets for AD. The online version contains supplementary material available at 10.1007/s00401-025-02949-5.Catalog #: Product Name: 05220 STEMdiffâ„¢ Mesoderm Induction Medium 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05220 Product Name: STEMdiffâ„¢ Mesoderm Induction Medium Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 ReferenceE. Ayan et al. (Sep 2025) PLOS One 20 9Optimizing recombinant mini proinsulin production via response surface method and microbioreactor screening
The increasing demand for efficient recombinant insulin production necessitates the development of scalable, high-yield, and cost-effective bioprocesses. In this study, we engineered a novel mini-proinsulin (nMPI) with enhanced expression properties by shortening the C-peptide and incorporating specific residue substitutions to eliminate the need for enzymatic cleavage. To optimize its production, we applied a hybrid approach combining microscale high-throughput cultivation using the BioLector microbioreactor and statistical modeling via response surface methodology (RSM). Critical medium components were first screened using Plackett–Burman Design (PBD) and refined through Central Composite Design (CDD), identifying glycerol as the most influential factor for yield. Among the four statistically derived formulations, Scenario III demonstrated the highest productivity in the microscale platform (13.00 g/L) and maintained strong performance upon scale-up to a 3-L bioreactor (11.5 g/L). The optimized medium balanced carbon and nitrogen sources to enhance cell viability and maximize protein expression. This study not only confirms the predictive accuracy and scalability of the hybrid optimization system but also introduces a robust production platform for nMPI that can be translated into industrial settings. The workflow presented here can serve as a model for the development of efficient expression systems for complex recombinant proteins in E. coli.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 05990 °Õ±ð³§¸éâ„¢-·¡8â„¢ Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05990 Product Name: °Õ±ð³§¸éâ„¢-·¡8â„¢ ReferenceM. R. Shoeb et al. (Aug 2025) Communications Biology 8A stem cell differentiation model reveals two alternative fates in CBFA2T3::GLIS2-driven acute megakaryoblastic leukemia initiation
The CBFA2T3::GLIS2 (CG) fusion protein causes aggressive pediatric acute megakaryoblastic leukemia (AMKL). Although dysregulated molecular pathways in AMKL have been identified, their role in early pre-leukemic transformation remains poorly understood. We developed a disease model utilizing genetically modified human induced pluripotent stem cells (hiPSC) physiologically and conditionally expressing CG. Using in vitro differentiation and single-cell multi-omics, we captured the impact of oncogene activity on gene-regulatory networks during hematopoiesis. We discovered that CG interferes with myelopoiesis through two alternative routes: by locking aberrant megakaryocyte progenitors (aMKP) in a proliferative state, or by impeding differentiation of aberrant megakaryocytes (aMK). Transcriptionally and functionally, aMKPs mimic CG-AMKL cells and establish a self-renewal network with co-factors GATA2, ERG, and DLX3. In contrast, aMKs partially sustain regulators of MK maturation but fail to complete differentiation due to repression of factors like NFE2, SPI1, GATA1 and LYL1. These insights may inform new strategies for targeting AMKL cell states. Subject terms: Acute myeloid leukaemia, Cancer modelsCatalog #: Product Name: 100-0276 mTeSRâ„¢ Plus 05310 STEMdiffâ„¢ Hematopoietic Kit Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Catalog #: 05310 Product Name: STEMdiffâ„¢ Hematopoietic Kit ReferenceM. A. J. Morsink et al. (Sep 2025) Journal of Tissue Engineering 16 1A patient-specific engineered tissue model of BAG3-mediated cardiomyopathy
Pathogenic mutations in Bcl2-associated athanogene 3 (BAG3) cause genetic dilated cardiomyopathy (DCM), a disease characterized by ventricular dilation, systolic dysfunction, and fibrosis. Previous studies have demonstrated that BAG3 mediates sarcomeric protein turnover through chaperone-assisted selective autophagy to maintain sarcomere integrity in the human heart. Although mouse models provide valuable insights into whole-organism effects of BAG3 knockout or pathogenic variants, their utility is limited by species-specific differences in pathophysiology, which often do not translate to humans and contribute to the failure of clinical trials. As a result, the development of induced pluripotent stem cell-derived cardiomyocytes (iCM) and engineered heart tissues presents a promising alternative for studying adult-onset cardiac diseases. Here, we used genome engineering to generate an isogenic pseudo-wild-type control cell line from a patient-derived iPSC line carrying a pathogenic BAG3 variant, clinically presenting with DCM. While monolayer iCMs recapitulated some features of BAG3-mediated DCM, such as reduced autophagy, mitochondrial membrane potential, and decreased HSPB8 stability, they failed to develop the age-associated impairment in sarcomere integrity. Therefore, we developed a mature, patient-specific, human engineered heart tissue model of BAG3-mediated DCM and compared it to its isogenic healthy control. We demonstrated successful recapitulation of adult-like features of the clinically observed disorganized sarcomeres and impaired tissue contractility, thereby providing a platform to investigate BAG3-related pathophysiology and therapeutic interventions. Graphical abstractCatalog #: Product Name: 100-0276 mTeSRâ„¢ Plus Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus ReferenceS. Conte et al. (Sep 2025) Cells 14 17Distinct Inflammatory Responses of hiPSC-Derived Endothelial Cells and Cardiomyocytes to Cytokines Involved in Immune Checkpoint Inhibitor-Associated Myocarditis
Inflammatory cytokines, particularly interferon-γ (IFN-γ), are markedly elevated in the peripheral blood of patients with immune checkpoint inhibitor-induced myocarditis (ICI-M). Endomyocardial biopsies from these patients also show GBP-associated inflammasome overexpression. While both factors are implicated in ICI-M pathophysiology, their interplay and cellular targets remain poorly characterized. Our aim was to elucidate how ICI-M-associated cytokines affect the viability and inflammatory responses of endothelial cells (ECs) and cardiomyocytes (CMs) using human induced pluripotent stem cell (hiPSC)-derived models. ECs and CMs were differentiated from the same hiPSC line derived from a healthy donor. Cells were exposed either to IFN-γ alone or to an inflammatory cytokine cocktail (CCL5, GZMB, IL-1β, IL-2, IL-6, IFN-γ, TNF-α). We assessed large-scale transcriptomic changes via microarray and evaluated inflammatory, apoptotic, and cell death pathways at cellular and molecular levels. hiPSC-ECs were highly sensitive to cytokine exposure, displaying significant mortality and marked transcriptomic changes in immunity- and inflammation-related pathways. In contrast, hiPSC-CM showed limited transcriptional changes and reduced susceptibility to cytokine-induced death. In both cell types, cytokine treatment upregulated key components of the inflammasome pathway, including regulators (GBP5, GBP6, P2X7, NLRC5), a core component (AIM2), and the effector GSDMD. Increased GBP5 expression and CASP-1 cleavage mirrored the findings found elsewhere in endomyocardial biopsies from ICI-M patients. This hiPSC-based model reveals a distinct cellular sensitivity to ICI-M-related inflammation, with endothelial cells showing heightened vulnerability. These results reposition endothelial dysfunction, rather than cardiomyocyte injury alone, as a central mechanism in ICI-induced myocarditis. Modulating endothelial inflammasome activation, particularly via AIM2 inhibition, could offer a novel strategy to mitigate cardiac toxicity while preserving antitumor efficacy.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 08005 STEMdiffâ„¢ Endothelial Differentiation Kit Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 08005 Product Name: STEMdiffâ„¢ Endothelial Differentiation Kit ReferenceB. N. Flores et al. (Aug 2025) Nature Communications 16Investigational eIF2B activator DNL343 modulates the integrated stress response in preclinical models of TDP-43 pathology and individuals with ALS in a randomized clinical trial
Neuronal TDP-43 aggregates are a hallmark ALS pathology. The integrated stress response (ISR) occurs downstream of TDP-43 pathology and may promote neurodegeneration. Here we demonstrate that a CNS penetrant small molecule eIF2B activator inhibits the ISR in cellular models of ALS and the brain of an inducible mouse model of TDP-43 pathology, where it transiently slowed progression of locomotor deficits and neurodegeneration. ISR activation was observed in ALS patient spinal cord and CSF. The investigational drug DNL343 was advanced into Phase 1 and Phase 1b randomized, double-blind, placebo-controlled trials in healthy and ALS participants, respectively (NCT04268784/NCT05006352); the primary objective in both studies was to investigate the safety and tolerability DNL343. DNL343 demonstrated a half-life supporting once-daily dosing and showed extensive CSF distribution. DNL343 was generally well tolerated and reduced ISR biomarkers in peripheral blood mononuclear cells and CSF of ALS participants. Therefore, DNL343 is a useful investigational drug to explore the effects of ISR inhibition in ALS models and individuals with neurological diseases. Flores et al. show that brain-penetrant eIF2B agonists suppress ISR activation in cellular and mouse models of ALS and reduce ISR biomarkers in humans, enabling further clinical studies of ISR inhibition in individuals with neurological diseasesCatalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus ReferenceM. Idorn et al. (Oct 2025) The Journal of Experimental Medicine 223 1Role for NF-κB in herpes encephalitis pathology in mice genocopying an inborn error of IRF3-IFN immunity
Idorn et al. characterized a mouse strain harboring a mutation identified in an HSE patient. Defective IFN-driven antiviral responses led to hyperactivation of inflammatory responses, which contributed to disease development. The study identifies immunopathology as an important contributor to HSE pathogenesis.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 34811 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 34811 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 Items 997 to 1008 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.