Product Information
Items 805 to 816 of 14010 total
- ReferenceJ. Mei et al. (Sep 2024) Journal for Immunotherapy of Cancer 12 9
Angiotensin receptor blocker attacks armored and cold tumors and boosts immune checkpoint blockade
Immune checkpoint blockade (ICB) has made remarkable achievements, but newly identified armored and cold tumors cannot respond to ICB therapy. The high prevalence of concomitant medications has huge impact on immunotherapeutic responses, but the clinical effects on the therapeutic outcome of armored and cold tumors are still unclear. In this research, using large-scale transcriptomics datasets, the expression and potential biological functions of angiotensin II receptor 1 (AGTR1), the target of angiotensin receptor blocker (ARB), were investigated. Next, the roles of ARB in tumor cells and tumor microenvironment cells were defined by a series of in vitro and in vivo assays. In addition, the clinical impacts of ARB on ICB therapy were assessed by multicenter cohorts and meta-analysis. AGTR1 was overexpressed in armored and cold tumors and associated with poor response to ICB therapy. ARB, the inhibitor for AGTR1, only suppressed the aggressiveness of tumor cells with high AGTR1 expression, which accounted for a very small proportion. Further analysis revealed that AGTR1 was always highly expressed in cancer-associated fibroblasts (CAFs) and ARB inhibited type I collagen expression in CAFs by suppressing the RhoA-YAP axis. Moreover, ARB could also drastically reverse the phenotype of armored and cold to soft and hot in vivo, leading to a higher response to ICB therapy. In addition, both our in-house cohorts and meta-analysis further supported the idea that ARB can significantly enhance ICB efficacy. Overall, we identify AGTR1 as a novel target in armored and cold tumors and demonstrate the improved therapeutic efficacy of ICB in combination with ARB. These findings could provide novel clinical insight into how to treat patients with refractory armored and cold tumors.Catalog #: Product Name: 10971 ImmunoCultâ„¢ Human CD3/CD28 T Cell Activator 10981 ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó T Cell Expansion Medium 100-0956 ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó 100-0784 ImmunoCultâ„¢ Human CD3/CD28 T Cell Activator Catalog #: 10971 Product Name: ImmunoCultâ„¢ Human CD3/CD28 T Cell Activator Catalog #: 10981 Product Name: ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó T Cell Expansion Medium Catalog #: 100-0956 Product Name: ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó Catalog #: 100-0784 Product Name: ImmunoCultâ„¢ Human CD3/CD28 T Cell Activator ReferenceA. Cigliano et al. (Sep 2024) Journal of Experimental & Clinical Cancer Research : CR 43 6HSF1 is a prognostic determinant and therapeutic target in intrahepatic cholangiocarcinoma
Intrahepatic cholangiocarcinoma (iCCA) is a lethal primary liver tumor characterized by clinical aggressiveness, poor prognosis, and scarce therapeutic possibilities. Therefore, new treatments are urgently needed to render this disease curable. Since cumulating evidence supports the oncogenic properties of the Heat Shock Factor 1 (HSF1) transcription factor in various cancer types, we investigated its pathogenetic and therapeutic relevance in iCCA. Levels of HSF1 were evaluated in a vast collection of iCCA specimens. The effects of HSF1 inactivation on iCCA development in vivo were investigated using three established oncogene-driven iCCA mouse models. In addition, the impact of HSF1 suppression on tumor cells and tumor stroma was assessed in iCCA cell lines, human iCCA cancer-associated fibroblasts (hCAFs), and patient-derived organoids. Human preinvasive, invasive, and metastatic iCCAs displayed widespread HSF1 upregulation, which was associated with a dismal prognosis of the patients. In addition, hydrodynamic injection of a dominant-negative form of HSF1 (HSF1dn), which suppresses HSF1 activity, significantly delayed cholangiocarcinogenesis in AKT/NICD, AKT/YAP, and AKT/TAZ mice. In iCCA cell lines, iCCA hCAFs, and patient-derived organoids, administration of the HSF1 inhibitor KRIBB-11 significantly reduced proliferation and induced apoptosis. Cell death was profoundly augmented by concomitant administration of the Bcl-xL/Bcl2/Bcl-w inhibitor ABT-263. Furthermore, KRIBB-11 reduced mitochondrial bioenergetics and glycolysis of iCCA cells. The present data underscore the critical pathogenetic, prognostic, and therapeutic role of HSF1 in cholangiocarcinogenesis. The online version contains supplementary material available at 10.1186/s13046-024-03177-7.Catalog #: Product Name: 100-0386 HepatiCultâ„¢ Organoid Kit (Human) Catalog #: 100-0386 Product Name: HepatiCultâ„¢ Organoid Kit (Human) ReferenceC. Colussi et al. (Sep 2024) Stem Cell Research & Therapy 15 6Nucleoporin 153 deficiency in adult neural stem cells defines a pathological protein-network signature and defective neurogenesis in a mouse model of AD
Reduction of adult hippocampal neurogenesis is an early critical event in Alzheimer’s disease (AD), contributing to progressive memory loss and cognitive decline. Reduced levels of the nucleoporin 153 (Nup153), a key epigenetic regulator of NSC stemness, characterize the neural stem cells isolated from a mouse model of AD (3×Tg) (AD-NSCs) and determine their altered plasticity and gene expression. Nup153-regulated mechanisms contributing to NSC function were investigated: (1) in cultured NSCs isolated from AD and wild type (WT) mice by proteomics; (2) in vivo by lentiviral-mediated delivery of Nup153 or GFP in the hippocampus of AD and control mice analyzing neurogenesis and cognitive function; (3) in human iPSC-derived brain organoids obtained from AD patients and control subjects as a model of neurodevelopment. Proteomic approach identified Nup153 interactors in WT- and AD-NSCs potentially implicated in neurogenesis regulation. Gene ontology (GO) analysis showed that Nup153-bound proteins in WT-NSCs were involved in RNA metabolism, nuclear import and epigenetic mechanisms. Nup153-bound proteins in AD-NSCs were involved in pathways of neurodegeneration, mitochondrial dysfunction, proteasomal processing and RNA degradation. Furthermore, recovery of Nup153 levels in AD-NSCs reduced the levels of oxidative stress markers and recovered proteasomal activity. Lentiviral-mediated delivery of Nup153 in the hippocampal niche of AD mice increased the proliferation of early progenitors, marked by BrdU/DCX and BrdU/PSANCAM positivity and, later, the integration of differentiating neurons in the cell granule layer (BrdU/NeuN + cells) compared with GFP-injected AD mice. Consistently, Nup153-injected AD mice showed an improvement of cognitive performance in comparison to AD-GFP mice at 1 month after virus delivery assessed by Morris Water Maze. To validate the role of Nup153 in neurogenesis we took advantage of brain organoids derived from AD-iPSCs characterized by fewer neuroepithelial progenitor loops and reduced differentiation areas. The upregulation of Nup153 in AD organoids recovered the formation of neural-like tubes and differentiation. Our data suggest that the positive effect of Nup153 on neurogenesis is based on a complex regulatory network orchestrated by Nup153 and that this protein is a valuable disease target. The online version contains supplementary material available at 10.1186/s13287-024-03805-1.Catalog #: Product Name: 08570 STEMdiff™ Cerebral Organoid Kit Catalog #: 08570 Product Name: STEMdiff™ Cerebral Organoid Kit ReferenceP. Zelina et al. (Sep 2024) Acta Neuropathologica Communications 12 5ALS-associated C21ORF2 variant disrupts DNA damage repair, mitochondrial metabolism, neuronal excitability and NEK1 levels in human motor neurons
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors. The analysis further identified C21ORF2 as a strongly connected protein. The role of C21ORF2 in neurons and in the nervous system, and of ALS-associated C21ORF2 variants is largely unknown. Therefore, we combined human iPSC-derived motor neurons with other models and different molecular cell biological approaches to characterize the potential pathogenic effects of C21ORF2 mutations in ALS. First, our data show C21ORF2 expression in ALS-relevant mouse and human neurons, such as spinal and cortical motor neurons. Further, the prominent ALS-associated variant C21ORF2-V58L caused increased apoptosis in mouse neurons and movement defects in zebrafish embryos. iPSC-derived motor neurons from C21ORF2-V58L-ALS patients, but not isogenic controls, show increased apoptosis, and changes in DNA damage response, mitochondria and neuronal excitability. In addition, C21ORF2-V58L induced post-transcriptional downregulation of NEK1, an ALS-associated protein implicated in apoptosis and DDR. In all, our study defines the pathogenic molecular and cellular effects of ALS-associated C21ORF2 mutations and implicates impaired post-transcriptional regulation of NEK1 downstream of mutant C21ORF72 in ALS. The online version contains supplementary material available at 10.1186/s40478-024-01852-6.Catalog #: Product Name: 05230 STEMdiff™ Trilineage Differentiation Kit Catalog #: 05230 Product Name: STEMdiff™ Trilineage Differentiation Kit ReferenceK. Lee et al. (Sep 2024) Scientific Reports 14 374Ultralow-dose irradiation enables engraftment and intravital tracking of disease initiating niches in clonal hematopoiesis
Recent advances in imaging suggested that spatial organization of hematopoietic cells in their bone marrow microenvironment (niche) regulates cell expansion, governing progression, and leukemic transformation of hematological clonal disorders. However, our ability to interrogate the niche in pre-malignant conditions has been limited, as standard murine models of these diseases rely largely on transplantation of the mutant clones into conditioned mice where the marrow microenvironment is compromised. Here, we leveraged live-animal microscopy and ultralow dose whole body or focal irradiation to capture single cells and early expansion of benign/pre-malignant clones in the functionally preserved microenvironment. 0.5 Gy whole body irradiation (WBI) allowed steady engraftment of cells beyond 30 weeks compared to non-conditioned controls. In-vivo tracking and functional analyses of the microenvironment showed no change in vessel integrity, cell viability, and HSC-supportive functions of the stromal cells, suggesting minimal inflammation after the radiation insult. The approach enabled in vivo imaging of Tet2 + /− and its healthy counterpart, showing preferential localization within a shared microenvironment while forming discrete micro-niches. Notably, stationary association with the niche only occurred in a subset of cells and would not be identified without live imaging. This strategy may be broadly applied to study clonal disorders in a spatial context.Catalog #: Product Name: 05455 MesenCult™-ACF Chondrogenic Differentiation Kit Catalog #: 05455 Product Name: MesenCult™-ACF Chondrogenic Differentiation Kit ReferenceB. Lendemeijer et al. (Sep 2024) eNeuro 11 9Human Pluripotent Stem Cell-Derived Astrocyte Functionality Compares Favorably with Primary Rat Astrocytes
Astrocytes are essential for the formation and maintenance of neural networks. However, a major technical challenge for investigating astrocyte function and disease-related pathophysiology has been the limited ability to obtain functional human astrocytes. Despite recent advances in human pluripotent stem cell (hPSC) techniques, primary rodent astrocytes remain the gold standard in coculture with human neurons. We demonstrate that a combination of leukemia inhibitory factor (LIF) and bone morphogenetic protein-4 (BMP4) directs hPSC-derived neural precursor cells to a highly pure population of astroglia in 28 d. Using single-cell RNA sequencing, we confirm the astroglial identity of these cells and highlight profound transcriptional adaptations in cocultured hPSC-derived astrocytes and neurons, consistent with their further maturation. In coculture with human neurons, multielectrode array recordings revealed robust network activity of human neurons in a coculture with hPSC-derived or rat astrocytes [3.63 ± 0.44 min −1 (hPSC-derived), 2.86 ± 0.64 min −1 (rat); p = 0.19]. In comparison, we found increased spike frequency within network bursts of human neurons cocultured with hPSC-derived astrocytes [56.31 ± 8.56 Hz (hPSC-derived), 24.77 ± 4.04 Hz (rat); p < 0.01], and whole-cell patch-clamp recordings revealed an increase of postsynaptic currents [2.76 ± 0.39 Hz (hPSC-derived), 1.07 ± 0.14 Hz (rat); p < 0.001], consistent with a corresponding increase in synapse density [14.90 ± 1.27/100 μm 2 (hPSC-derived), 8.39 ± 0.63/100 μm 2 (rat); p < 0.001]. Taken together, we show that hPSC-derived astrocytes compare favorably with rat astrocytes in supporting human neural network activity and maturation, providing a fully human platform for investigating astrocyte function and neuronal-glial interactions.Catalog #: Product Name: 05790 BrainPhys™ Neuronal Medium Catalog #: 05790 Product Name: BrainPhys™ Neuronal Medium ReferenceW. D. Souza et al. (Aug 2024) Materials Today Bio 28 20Osteoblasts-derived exosomes as potential novel communicators in particle-induced periprosthetic osteolysis
The inflammatory response to wear particles derived from hip prothesis is considered a hallmark of periprosthetic osteolysis, which can ultimately lead to the need for revision surgery. Exosomes (Exos) have been associated with various bone pathologies, and there is increasing recognition in the literature that they actively transport molecules throughout the body. The role of wear particles in osteoblast-derived Exos is unknown, and the potential contribution of Exos to osteoimmune communication and periprosthetic osteolysis niche is still in its infancy. Given this, we investigate how titanium dioxide nanoparticles (TiO 2 NPs), similar in size and composition to prosthetic wear particles, affect Exos biogenesis. Two osteoblastic cell models commonly used to study the response of osteoblasts to wear particles were selected as a proof of concept. The contribution of Exos to periprosthetic osteolysis was assessed by functional assays in which primary human macrophages were stimulated with bone-derived Exos. We demonstrated that TiO 2 NPs enter multivesicular bodies, the nascent of Exos, altering osteoblast-derived Exos secretion and molecular cargo. No significant differences were observed in Exos morphology and size. However, functional assays reveal that Exos cargo enriched in uPA stimulates macrophages to a mixed M1 and M2 phenotype, inducing the release of pro- and anti-inflammatory signals characteristic of periprosthetic osteolysis. In addition, we demonstrated the expression of uPA in exosomes derived from the urine of patients with osteolysis. These results suggest that uPA can be a potential biomarker of osteolysis. In the future, uPa may serve as a possible non-invasive biomarker to identify patients at risk for peri-implant osteolysis.Catalog #: Product Name: 15028 RosetteSepâ„¢ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSepâ„¢ Human Monocyte Enrichment Cocktail ReferenceA. Arner et al. (Aug 2024) PLOS ONE 19 8In vivo monitoring of leukemia-niche interactions in a zebrafish xenograft model
Acute lymphoblastic leukemia (ALL) is the most common type of malignancy in children. ALL prognosis after initial diagnosis is generally good; however, patients suffering from relapse have a poor outcome. The tumor microenvironment is recognized as an important contributor to relapse, yet the cell-cell interactions involved are complex and difficult to study in traditional experimental models. In the present study, we established an innovative larval zebrafish xenotransplantation model, that allows the analysis of leukemic cells (LCs) within an orthotopic niche using time-lapse microscopic and flow cytometric approaches. LCs homed, engrafted and proliferated within the hematopoietic niche at the time of transplant, the caudal hematopoietic tissue (CHT). A specific dissemination pattern of LCs within the CHT was recorded, as they extravasated over time and formed clusters close to the dorsal aorta. Interactions of LCs with macrophages and endothelial cells could be quantitatively characterized. This zebrafish model will allow the quantitative analysis of LCs in a functional and complex microenvironment, to study mechanisms of niche mediated leukemogenesis, leukemia maintenance and relapse development.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM ReferenceS. Parveen et al. (Jul 2024) iScience 27 8Bacterial pore-forming toxin pneumolysin drives pathogenicity through host extracellular vesicles released during infection
Streptococcus pneumoniae is a global priority respiratory pathogen that kills over a million people annually. The pore-forming cytotoxin, pneumolysin (PLY) is a major virulence factor. Here, we found that recombinant PLY as well as wild-type pneumococcal strains, but not the isogenic PLY mutant, upregulated the shedding of extracellular vesicles (EVs) harboring membrane-bound toxin from human THP-1 monocytes. PLY-EVs induced cytotoxicity and hemolysis dose-dependently upon internalization by recipient monocyte-derived dendritic cells. Proteomics analysis revealed that PLY-EVs are selectively enriched in key inflammatory host proteins such as IFI16, NLRC4, PTX3, and MMP9. EVs shed from PLY-challenged or infected cells induced dendritic cell maturation and primed them to infection. In vivo , zebrafish administered with PLY-EVs showed pericardial edema and mortality. Adoptive transfer of bronchoalveolar-lavage-derived EVs from infected mice to healthy recipients induced lung damage and inflammation in a PLY-dependent manner. Our findings identify that host EVs released during infection mediate pneumococcal pathogenesis. Subject areas: Microbiology, Bacteriology, Cell biologyCatalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail ReferenceM. A. Berrocal-Rubio et al. (Aug 2024) BMC Genomics 25 Suppl 1Discovery of NRG1-VII: the myeloid-derived class of NRG1
The growth factor Neuregulin-1 (NRG1) has pleiotropic roles in proliferation and differentiation of the stem cell niche in different tissues. It has been implicated in gut, brain and muscle development and repair. Six isoform classes of NRG1 and over 28 protein isoforms have been previously described. Here we report a new class of NRG1, designated NRG1-VII to denote that these NRG1 isoforms arise from a myeloid-specific transcriptional start site (TSS) previously uncharacterized. Long-read sequencing was used to identify eight high-confidence NRG1-VII transcripts. These transcripts presented major structural differences from one another, through the use of cassette exons and alternative stop codons. Expression of NRG1-VII was confirmed in primary human monocytes and tissue resident macrophages and induced pluripotent stem cell-derived macrophages (iPSC-derived macrophages). Isoform switching via cassette exon usage and alternate polyadenylation was apparent during monocyte maturation and macrophage differentiation. NRG1-VII is the major class expressed by the myeloid lineage, including tissue-resident macrophages. Analysis of public gene expression data indicates that monocytes and macrophages are a primary source of NRG1. The size and structure of class VII isoforms suggests that they may be more diffusible through tissues than other NRG1 classes. However, the specific roles of class VII variants in tissue homeostasis and repair have not yet been determined. The online version contains supplementary material available at 10.1186/s12864-024-10723-2.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ ReferenceR. V. D. Sá et al. (Aug 2024) Nature Communications 15ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes
Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are the strongest genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. Here, we combine patient-derived and mouse models to dissect the effects of ATXN2 intermediate expansions in an ALS background. iPSC-derived motor neurons from ATXN2-ALS patients show altered stress granules, neurite damage and abnormal electrophysiological properties compared to healthy control and other familial ALS mutations. In TDP-43 Tg -ALS mice, ATXN2-Q33 causes reduced motor function, NMJ alterations, neuron degeneration and altered in vitro stress granule dynamics. Furthermore, gene expression changes related to mitochondrial function and inflammatory response are detected and confirmed at the cellular level in mice and human neuron and organoid models. Together, these results define pathogenic defects underlying ATXN2-ALS and provide a framework for future research into ATXN2-dependent pathogenesis and therapy. Subject terms: Amyotrophic lateral sclerosis, Molecular neuroscience, Cellular neuroscienceCatalog #: Product Name: 34811 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 Catalog #: 34811 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢800 ReferenceP. Truong et al. (Aug 2024) Nature Communications 15TOPORS E3 ligase mediates resistance to hypomethylating agent cytotoxicity in acute myeloid leukemia cells
Hypomethylating agents (HMAs) are frontline therapies for Myelodysplastic Neoplasms (MDS) and Acute Myeloid Leukemia (AML). However, acquired resistance and treatment failure are commonplace. To address this, we perform a genome-wide CRISPR-Cas9 screen in a human MDS-derived cell line, MDS-L, and identify TOPORS as a loss-of-function target that synergizes with HMAs, reducing leukemic burden and improving survival in xenograft models. We demonstrate that depletion of TOPORS mediates sensitivity to HMAs by predisposing leukemic blasts to an impaired DNA damage response (DDR) accompanied by an accumulation of SUMOylated DNMT1 in HMA-treated TOPORS-depleted cells. The combination of HMAs with targeting of TOPORS does not impair healthy hematopoiesis. While inhibitors of TOPORS are unavailable, we show that inhibition of protein SUMOylation with TAK-981 partially phenocopies HMA-sensitivity and DDR impairment. Overall, our data suggest that the combination of HMAs with inhibition of SUMOylation or TOPORS is a rational treatment option for High-Risk MDS (HR-MDS) or AML. Subject terms: Myelodysplastic syndrome, Acute myeloid leukaemia, SumoylationCatalog #: Product Name: 05100 MyeloCultâ„¢ H5100 Catalog #: 05100 Product Name: MyeloCultâ„¢ H5100 Items 805 to 816 of 14010 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2905 items
- Reference 7990 items
- Safety Data Sheet 3053 items
- Technical Manual 62 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 4 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 742 items
- Infectious Diseases 4 items
- Neuroscience 492 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 753 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 252 items
- STEMdiff 55 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 26 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 382 items
- Neurons 136 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 40 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.