Product Information
Items 565 to 576 of 13914 total
- ReferenceL. Castagnoli et al. (Jan 2025) Journal of Experimental & Clinical Cancer Research : CR 44
CD36 enrichment in HER2-positive mesenchymal stem cells drives therapy refractoriness in breast cancer
Growing evidence shows that the reprogramming of fatty acid (FA) metabolism plays a key role in HER2-positive (HER2 +) breast cancer (BC) aggressiveness, therapy resistance and cancer stemness. In particular, HER2 + BC has been defined as a "lipogenic disease" due to the functional and bi-directional crosstalk occurring between HER2-mediated oncogenic signaling and FA biosynthesis via FA synthase activity. In this context, the functional role exerted by the reprogramming of CD36-mediated FA uptake in HER2 + BC poor prognosis and therapy resistance remains unclear. In this study, we aimed to elucidate whether enhanced CD36 in mesenchymal HER2 + cancer stem cells (CSCs) is directly involved in anti-HER2 treatment refractoriness in HER2 + BC and to design future metabolism-based approaches targeting both FA reprogramming and the “root†of cancer. Molecular, biological and functional characterization of CD36-mediated FA uptake was investigated in HER2 + BC patients, cell lines, epithelial and mesenchymal CSCs. Cell proliferation was analyzed by SRB assay upon treatment with lapatinib, CD36 inhibitor, or Wnt antagonist/agonist. Engineered cell models were generated via lentivirus infection and transient silencing. CSC-like properties and tumorigenesis of HER2 + BC cells with or without CD36 depletion were examined by mammosphere forming efficiency assay, flow cytometry, cell sorting, ALDH activity assay and xenograft mouse model. FA uptake was examined by flow cytometry with FA BODIPY FL C16. Intratumor expression of CSC subsets was evaluated via multiplex immunostaining and immunolocalization analysis. Molecular data demonstrated that CD36 is significantly upmodulated on treatment in therapy resistant HER2 + BC patients and its expression levels in BC cells is correlated with FA uptake. We provided evidence of a consistent enrichment of CD36 in HER2 + epithelial-mesenchymal transition (EMT)-like CSCs from all tested resistant cell models that mechanistically occurs via Wnt signaling pathway activation. Consistently, both in vitro and in vivo dual blockade of CD36 and HER2 increased the anti-CSC efficacy of anti-HER2 drugs favoring the transition of the therapy resistant mesenchymal CSCs into therapy-sensitive mesenchymal-epithelial transition (MET)-like epithelial state. In addition, expression of CD36 in intratumor HER2 + mesenchymal CSCs is significantly associated with resistance to trastuzumab in HER2 + BC patients. These results support the metabolo-oncogenic nature of CD36-mediated FA uptake in HER2 + therapy-refractory BC. Our study provides evidence that targeting CD36 might be an effective metabolic therapeutic strategy in the treatment of this malignancy. The online version contains supplementary material available at 10.1186/s13046-025-03276-z.Catalog #: Product Name: 01701 ALDEFLUOR™ Assay Buffer Catalog #: 01701 Product Name: ALDEFLUOR™ Assay Buffer ReferenceT. Y. Bowley et al. (Feb 2025) Cancer Research Communications 5 2A Melanoma Brain Metastasis CTC Signature and CTC:B-cell Clusters Associate with Secondary Liver Metastasis: A Melanoma Brain–Liver Metastasis Axis
Melanoma brain metastasis is linked to dismal prognosis and low overall survival and is detected in up to 80% of patients at autopsy. Circulating tumor cells (CTC) are the smallest functional units of cancer and precursors of fatal metastasis. We previously used an unbiased multilevel approach to discover a unique ribosomal protein large/small subunit (RPL/RPS) CTC gene signature associated with melanoma brain metastasis. In this study, we hypothesized that CTC-driven melanoma brain metastasis secondary metastasis (“metastasis of metastasis†per clinical scenarios) has targeted organ specificity for the liver. We injected parallel cohorts of immunodeficient and newly developed humanized NBSGW (huNBSGW) mice with cells from CTC-derived melanoma brain metastasis to identify secondary metastatic patterns. We found the presence of a melanoma brain–liver metastasis axis in huNBSGW mice. Furthermore, RNA sequencing analysis of tissues showed a significant upregulation of the RPL/RPS CTC gene signature linked to metastatic spread to the liver. Additional RNA sequencing of CTCs from huNBSGW blood revealed extensive CTC clustering with human B cells in these mice. CTC:B-cell clusters were also upregulated in the blood of patients with primary melanoma and maintained either in CTC-driven melanoma brain metastasis or melanoma brain metastasis CTC–derived cells promoting liver metastasis. CTC-generated tumor tissues were interrogated at single-cell gene and protein expression levels (10x Genomics Xenium and HALO spatial biology platforms, respectively). Collectively, our findings suggest that heterotypic CTC:B-cell interactions can be critical at multiple stages of metastasis. This study provides important insights into the relevance of prometastatic CTC:B-cell clusters in melanoma progression, extends the importance of the CTC RPL/RPS gene signature beyond primary metastasis/melanoma brain metastasis driving targeted organ specificity for liver metastasis (“metastasis of metastasisâ€), and identifies new targets for clinical melanoma metastasis therapies.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM 09605 StemSpanâ„¢ SFEM II Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM Catalog #: 09605 Product Name: StemSpanâ„¢ SFEM II ReferenceY. Dong et al. (Jan 2025) Journal of Translational Medicine 23 1PRDX2 induces tumor immune evasion by modulating the HDAC3-Galectin-9 axis in lung adenocarcinoma cells
PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target. Mouse animal models to verify the effect of Conoidin A treatment on tumor growth and T cell infiltration. Flow cytometry and Western blot verified tumor cell apoptosis in the in vitro co-culture system as well as granzyme B and perforin expression in T cells. RNA-Seq was used to obtain the downstream immune molecule. si-RNA knockdown of Galectin-9 was co-cultured with T cells in vitro. Immunofluorescence and Western blot verified that PRDX2 regulates Galectin-9 expression through HDAC3. PRDX2 expression was negatively correlated with CD8 + T cell expression in LUAD patients. Inhibition of PRDX2 significantly enhanced T-cell killing of LUAD cells and reduced tumor load in both in vitro and in vivo models. Mechanistically, Conoidin A or shRNA_PRDX2 decreased Galectin-9 expression by down-regulating the phosphorylation of HDAC3, consequently enhancing the infiltration and function of CD8 + T cells. This study reveals the role of the PRDX2/HDAC3/Galectin-9 axis in LUAD immune escape and indicates Galectin-9 as a promising target for immunotherapy. The online version contains supplementary material available at 10.1186/s12967-024-05888-z.Catalog #: Product Name: 10970 ImmunoCultâ„¢ Human CD3/CD28/CD2 T Cell Activator 100-0785 ImmunoCultâ„¢ Human CD3/CD28/CD2 T Cell Activator Catalog #: 10970 Product Name: ImmunoCultâ„¢ Human CD3/CD28/CD2 T Cell Activator Catalog #: 100-0785 Product Name: ImmunoCultâ„¢ Human CD3/CD28/CD2 T Cell Activator ReferenceC. Pleguezuelos-Manzano et al. (Jan 2025) Scientific Reports 15Dual RNA sequencing of a co-culture model of Pseudomonas aeruginosa and human 2D upper airway organoids
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required. Here, we set up a new P. aeruginosa infection model, using 2D upper airway nasal organoids that were derived from 3D organoids. Using dual RNA-sequencing, we dissected the interaction between organoid epithelial cells and WT or QS-mutant P. aeruginosa strains. Since only a single healthy individual and a single CF subject were used as donors for the organoids, conclusions about CF-specific effects could not be deduced. However, P. aeruginosa induced epithelial inflammation, whereas QS signaling did not affect the epithelial airway cells. Conversely, the epithelium influenced infection-related processes of P. aeruginosa , including QS-mediated regulation. Comparison of our model with samples from the airways of CF subjects indicated that our model recapitulates important aspects of infection in vivo. Hence, the 2D airway organoid infection model is relevant and may help to reduce the future burden of P. aeruginosa infections in CF. The online version contains supplementary material available at 10.1038/s41598-024-82500-w.Catalog #: Product Name: 05001 PneumaCult™-ALI Medium Catalog #: 05001 Product Name: PneumaCult™-ALI Medium ReferenceC. Sen et al. (Jan 2025) Respiratory Research 26 1Optimization of a micro-scale air–liquid-interface model of human proximal airway epithelium for moderate throughput drug screening for SARS-CoV-2
Many respiratory viruses attack the airway epithelium and cause a wide spectrum of diseases for which we have limited therapies. To date, a few primary human stem cell-based models of the proximal airway have been reported for drug discovery but scaling them up to a higher throughput platform remains a significant challenge. As a result, most of the drug screening assays for respiratory viruses are performed on commercial cell line-based 2D cultures that provide limited translational ability. We optimized a primary human stem cell-based mucociliary airway epithelium model of SARS-CoV-2 infection, in 96-well air–liquid-interface (ALI) format, which is amenable to moderate throughput drug screening. We tested the model against SARS-CoV-2 parental strain (Wuhan) and variants Beta, Delta, and Omicron. We applied this model to screen 2100 compounds from targeted drug libraries using a high throughput-high content image-based quantification method. The model recapitulated the heterogeneity of infection among patients with SARS-CoV-2 parental strain and variants. While there were heterogeneous responses across variants for host factor targeting compounds, the two direct-acting antivirals we tested, Remdesivir and Paxlovid, showed consistent efficacy in reducing infection across all variants and donors. Using the model, we characterized a new antiviral drug effective against both the parental strain and the Omicron variant. This study demonstrates that the 96-well ALI model of primary human mucociliary epithelium can recapitulate the heterogeneity of infection among different donors and SARS-CoV-2 variants and can be used for moderate throughput screening. Compounds that target host factors showed variability among patients in response to SARS-CoV-2, while direct-acting antivirals were effective against SARS-CoV-2 despite the heterogeneity of patients tested.Catalog #: Product Name: 05001 PneumaCult™-ALI Medium 05040 PneumaCult™-Ex Plus Medium Catalog #: 05001 Product Name: PneumaCult™-ALI Medium Catalog #: 05040 Product Name: PneumaCult™-Ex Plus Medium ReferenceA. Bentley-DeSousa et al. (Jan 2025) The Journal of Cell Biology 224 2A STING–CASM–GABARAP pathway activates LRRK2 at lysosomes
LRRK2 is a kinase whose activity is linked to Parkinson’s disease. This study identifies a pathway that links LRRK2 activation to lysosome perturbations. This pathway involves the process known as CASM and culminates in an interaction between LRRK2 and GABARAP at the surface of lysosomes.Catalog #: Product Name: 05310 STEMdiff™ Hematopoietic Kit Catalog #: 05310 Product Name: STEMdiff™ Hematopoietic Kit ReferenceS. Raghunandanan et al. (Dec 2024) PLOS Pathogens 20 12MCP5, a methyl-accepting chemotaxis protein regulated by both the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, is required for the immune evasion of Borrelia burgdorferi
Borrelia (or Borreliella ) burgdorferi , the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B . burgdorferi remains unclear. In this study, we show that mcp5 , a gene encoding one of the most abundant MCPs in B . burgdorferi , is differentially expressed in response to environmental signals and at distinct stages of the pathogen’s enzootic cycle. Notably, mcp5 expression is regulated by the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, two key regulatory pathways that are critical for the spirochete’s colonization of the tick vector and mammalian host, respectively. Infection experiments with an mcp5 mutant revealed that spirochetes lacking MCP5 were unable to establish infections in either C3H/HeN mice or Severe Combined Immunodeficiency (SCID) mice, which are deficient in adaptive immunity, underscoring MCP5’s critical role in mammalian infection. However, the mcp5 mutant was able to establish infection and disseminate in NOD SCID Gamma (NSG) mice, which are deficient in both adaptive and most innate immune responses, suggesting that MCP5 plays an important role in evading host innate immunity. Moreover, NK cell depletion in C3H and SCID mice restored the infectivity of the mcp5 mutant, further highlighting MCP5’s role in evading NK cell-associated immunity. Co-culture assays with NK cells and macrophages revealed that the mcp5 mutant enhanced interferon-gamma production by NK cells. In the tick vector, the mcp5 mutants survived feeding but failed to transmit to mice. These findings reveal that MCP5, regulated by both the Rrp1 and Rrp2 pathways, is critical for establishing infection in mammalian hosts by evading NK cell-mediated host innate immunity and is important for the transmission of spirochetes from ticks to mammalian hosts. This work provides a foundation for further elucidation of chemotactic signals sensed by MCP5 that facilitate B . burgdorferi in evading host defenses.Catalog #: Product Name: 05100 MyeloCult™ H5100 Catalog #: 05100 Product Name: MyeloCult™ H5100 ReferenceD. T. Claiborne et al. (Jan 2025) Nature Communications 16High frequency CCR5 editing in human hematopoietic stem progenitor cells protects xenograft mice from HIV infection
The only cure of HIV has been achieved in a small number of people who received a hematopoietic stem cell transplant (HSCT) comprising allogeneic cells carrying a rare, naturally occurring, homozygous deletion in the CCR5 gene. The rarity of the mutation and the significant morbidity and mortality of such allogeneic transplants precludes widespread adoption of this HIV cure. Here, we show the application of CRISPR/Cas9 to achieve >90% CCR5 editing in human, mobilized hematopoietic stem progenitor cells (HSPC), resulting in a transplant that undergoes normal hematopoiesis, produces CCR5 null T cells, and renders xenograft mice refractory to HIV infection. Titration studies transplanting decreasing frequencies of CCR5 edited HSPCs demonstrate that <90% CCR5 editing confers decreasing protective benefit that becomes negligible between 54% and 26%. Our study demonstrates the feasibility of using CRISPR/Cas9/RNP to produce an HSPC transplant with high frequency CCR5 editing that is refractory to HIV replication. These results raise the potential of using CRISPR/Cas9 to produce a curative autologous HSCT and bring us closer to the development of a cure for HIV infection. Subject terms: HIV infections, CRISPR-Cas9 genome editing, Retrovirus, Translational researchCatalog #: Product Name: 04034 MethoCultâ„¢ H4034 Optimum 22000 ³§°Õ·¡²Ñ±¹¾±²õ¾±´Ç²Ôâ„¢ Catalog #: 04034 Product Name: MethoCultâ„¢ H4034 Optimum Catalog #: 22000 Product Name: ³§°Õ·¡²Ñ±¹¾±²õ¾±´Ç²Ôâ„¢ ReferenceT. Kyian et al. (Dec 2024) Genes 15 12Expanding the Genotypic and Phenotypic Spectrum of OFD1 -Related Conditions: Three More Cases
Introduction: Pathogenic variants in the OFD1 gene are linked to a spectrum of syndromes that exhibit partial clinical overlap. Hemizygous loss-of-function variants are considered lethal in males, while heterozygous loss-of-function variants generally result in oro-facial-digital syndrome type 1. A reported phenotype, Simpson–Golabi–Behmel syndrome type 2, was published once but remains controversial, with many specialists questioning its validity and arguing about its continued listing in the OMIM database. Methods: To investigate the genetic and phenotypic characteristics of the patients, we performed clinical exome sequencing, family-based genetic analysis, X-inactivation studies, electron microscopy, and detailed clinical assessments. Results: Three patients from unrelated families carrying loss-of-function variants in the OFD1 gene were identified, emphasizing the diverse phenotypic spectrum of OFD1 -associated disorders. The first patient, a female with a heterozygous frameshift variant p.(Gln398LeufsTer2), was diagnosed with oro-facial-digital syndrome type 1. The second patient, a male with a heterozygous nonsense variant p.(Gln892Ter), presented with features resembling Simpson–Golabi–Behmel syndrome type 2, as previously reported under this diagnosis. The third patient, a male with another heterozygous nonsense variant p.(Glu879Ter), exhibited isolated primary ciliary dyskinesia without any syndromic features. Conclusions: This study contributes to the growing body of evidence on the expanding phenotypic spectrum of OFD1 -associated disorders. It underscores the need for further investigation into the molecular mechanisms underlying the diverse presentations and the necessity of re-evaluating diagnostic classifications for conditions such as SGBS2 in the context of variants in the OFD1 gene.Catalog #: Product Name: 05001 PneumaCult™-ALI Medium 05040 PneumaCult™-Ex Plus Medium Catalog #: 05001 Product Name: PneumaCult™-ALI Medium Catalog #: 05040 Product Name: PneumaCult™-Ex Plus Medium ReferenceK. Butcher et al. (Dec 2024) Biomolecules 14 12PLGA-Nano-Encapsulated Disulfiram Inhibits Cancer Stem Cells and Targets Non-Small Cell Lung Cancer In Vitro and In Vivo
Cancer stem cells (CSCs) play a key role in non-small cell lung cancer (NSCLC) chemoresistance and metastasis. In this study, we used two NSCLC cell lines to investigate the regulating effect of hypoxia in the induction and maintenance of CSC traits. Our study demonstrated hypoxia-induced stemness and chemoresistance at levels comparable to those in typical CSC sphere culture. Activation of the NF-κB pathway (by transfection of NF-κB-p65) plays a key role in NSCLC CSCs and chemoresistance. Disulfiram (DS), an anti-alcoholism drug, showed a strong in vitro anti-CSC effect. It blocked cancer cell sphere reformation and clonogenicity, synergistically enhanced the cytotoxicity of four anti-NSCLC drugs (doxorubicin, gemcitabine, oxaliplatin and paclitaxel) and reversed hypoxia-induced resistance. The effect of DS on CSCs is copper-dependent. A very short half-life in the bloodstream is the major limitation for the translation of DS into a cancer treatment. Our team previously developed a poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated DS (DS-PLGA) with a long half-life in the bloodstream. Intra venous injection of DS-PLGA in combination with the oral application of copper gluconate has strong anticancer efficacy in a metastatic NSCLC mouse model. Further study may be able to translate DS-PLGA into cancer applications.Catalog #: Product Name: 01700 ALDEFLUOR™ Kit Catalog #: 01700 Product Name: ALDEFLUOR™ Kit ReferenceF. Etzi et al. (Dec 2024) Cancers 16 24The Role of miR-486-5p on CSCs Phenotypes in Colorectal Cancer
Previous studies have indicated that the presence of cancer stem cells may be a contributing factor to the development of metastasis in colorectal cancer patients. Cancer stem cells represent a small subpopulation within the tumor mass that exhibits heightened resistance to treatment and possesses the capacity for self-replication, epithelial–mesenchymal transition, and the generation of new tumors. The tumor microenvironment secretes and releases several molecules that facilitate the self-renewal of cancer stem cells and provide support for colorectal cancer progression. microRNAs are involved in direct cell-to-cell signaling and paracrine signaling between tumor cells and other tumor microenvironment components. They could act as tumor suppressors or oncomiRs, and their deregulation is involved in colorectal cancer progression and cancer stem cell formation. In our previous studies, we demonstrated the oncosuppressive function of miR-486-5p in colorectal cancer; these findings prompted us to conduct a more detailed investigation into its role in cancer stem cell phenotypes. Background: Colorectal cancer (CRC) is the third diagnosed cancer worldwide. Forty-four percent of metastatic colorectal cancer patients were diagnosed at an early stage. Despite curative resection, approximately 40% of patients will develop metastases within a few years. Previous studies indicate the presence of cancer stem cells (CSCs) and their contribution to CRC progression and metastasis. miRNAs deregulation plays a role in CSCs formation and in tumor development. In light of previous studies, we investigated the role of miR-486-5p to understand its role in CSC better. Methods: The expression of miR-486-5p was assessed in adherent cells and spheres generated from two CRC cell lines to observe the difference in expression in CSC-enriched spheroids. Afterward, we overexpressed and underexpressed this miRNA in adherent and sphere cultures through the transfection of a miR-486-5p mimic and a mimic inhibitor. Results: The results demonstrated that miR-486-5p exhibited a notable downregulation in CSC models, and its overexpression led to a significant decrease in colony size. Conclusions: In this study, we confirmed that miR-486-5p plays an oncosuppressive role in CRC, thereby advancing our understanding of the role of this microRNA in the CSC phenotype.Catalog #: Product Name: 01700 ALDEFLUOR™ Kit Catalog #: 01700 Product Name: ALDEFLUOR™ Kit ReferenceA. Shtilbans et al. (Dec 2024) Frontiers in Neuroscience 18Combination of tauroursodeoxycholic acid, co-enzyme Q10 and creatine demonstrates additive neuroprotective effects in in-vitro models of Parkinson’s disease
This study aimed to evaluate different combinations of three dietary supplements for potential additive or synergistic effects in an in vitro Parkinson’s Disease model. The complex and diverse processes leading to neurodegeneration in each patient with a neurodegenerative disorder cannot be effectively addressed by a single medication. Instead, various combinations of potentially neuroprotective agents targeting different disease mechanisms simultaneously may show improved additive or synergistic efficacy in slowing the disease progression and allowing the agents to be utilized at lower doses to minimize side effects. We evaluated four possible combinations of the three selected supplements: tauroursodeoxycholic acid (TUDCA), co-enzyme Q10 (CoQ10), and creatine, chosen for their effects on different targets that had previously shown neuroprotective effects in preclinical models. We evaluated the following combinations: (1) TUDCA+CoQ10, (2) TUDCA+Creatine, (3) CoQ10 + Creatine, and (4) TUDCA+CoQ10 + Creatine. We used induced pluripotent stem cell (iPSC) derived human dopaminergic neurons from a patient with Parkinson’s disease and healthy control, as well as microglial cells, to evaluate for an additive or synergistic effect of these combinations on neurodegeneration and neuroinflammation. We used neurofilament heavy chain, tubulin filament, and proinflammatory cytokines as metrics. We have identified a triple combination of these supplements that showed an additive protective effect across all these endpoints. Indeed, the agents in that combination could address the majority of the known pathways leading to neurodegeneration, such as accumulation of misfolded α -synuclein, mitochondrial dysfunction, reactive oxygen species, and neuroinflammation. We demonstrated that the combination of TUDCA, CoQ10, and creatine exerts an additive effect in in vitro models of a neurodegenerative disease, surpassing the efficacy of each compound individually. This combination shows strong potential as a candidate for further preclinical confirmatory studies and clinical trials as a neuroprotective treatment for patients with, or at risk for, Parkinson’s disease.Catalog #: Product Name: 05310 STEMdiff™ Hematopoietic Kit Catalog #: 05310 Product Name: STEMdiff™ Hematopoietic Kit Items 565 to 576 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.