Product Information
Items 565 to 576 of 14010 total
- ReferenceY. Wu et al. (Apr 2025) Journal of Extracellular Biology 4 4
Evaluating the Influence of Different Serumâ€Free Culture Conditions on the Production and Function of Natural Killer Cellâ€Derived Extracellular Vesicles
Natural killer (NK) cells are exploited in cellular therapies for cancer. While NK cell therapies are efficient against haematological cancers, it has been difficult to target solid tumours due to low tumour infiltration and a hostile tumour microenvironment. NKâ€cell derived extracellular vesicles (NKâ€EVs) target and kill cancer cells in vitro and represent an alternative treatment strategy for solid tumours. To exploit their potential, it is necessary to standardize NKâ€EV production protocols. Here, we have performed a comparative analysis of EVs from the human NKâ€92 cell line cultured in five serumâ€free commercial media optimized for growth of human NK cells and one serumâ€free medium for growth of lymphocytes. The effect of growing the NKâ€92 cells in static cell cultures versus shaking flasks was compared. EVs were purified via ultracentrifugation followed by sizeâ€exclusion chromatography. We found that there were no significant differences in EV yield from NKâ€92 cells grown under static or dynamic conditions. However, we found clear differences between the different culture media in terms of EV purity as assessed by the enrichment of the CD63 and CD81 markers in the isolates that translated into their capacity to induce apoptosis of the colon cancer cell line HCT 116. These findings will be instructive for the design of future production protocols for therapeutic NKâ€cell derived EVs.Catalog #: Product Name: 100-0711 ImmunoCultâ„¢ NK Cell Expansion Kit Catalog #: 100-0711 Product Name: ImmunoCultâ„¢ NK Cell Expansion Kit ReferenceM. Lora et al. (Apr 2025) Clinical and Translational Science 18 5Low Dose Methotrexate Has Divergent Effects on Cycling and Resting Human Hematopoietic Stem and Progenitor Cells
Low dose methotrexate (LDâ€MTX) remains the gold standard in rheumatoid arthritis (RA) therapy. Multiple mechanisms on a variety of immune cells contribute to the antiâ€inflammatory effects of LDâ€MTX. Inflammatory signaling is deeply implicated in hematopoiesis by regulating hematopoietic stem and progenitor cell (HSPC) fate decisions; raising the question of whether HSPC are also modulated by LDâ€MTX. This is the first study to characterize the effects of LDâ€MTX on HSPC. CD34 + HSPC were isolated from healthy donors' nonâ€mobilized peripheral blood. Resting and/or cycling HSPCs were treated with LDâ€MTX [dose equivalent to that used in RA patients]. Flow cytometry was performed to assess HSPC viability, cell cycle, surface abundance of reduced folate carrier 1 (RFC1), proliferation, reactive oxygen species (ROS) levels, DNA doubleâ€strand breaks, p38 activation, and CD34 + subpopulations. HSPC clonogenicity was tested in colonyâ€forming cell assays. Our results indicate that in cycling HSPC, membrane RFC1 is upregulated and, following LDâ€MTX treatment, they accumulate more intracellular MTX than resting HSPC. In cycling HSPC, LDâ€MTX inhibits HSPC expansion by promoting Sâ€phase cellâ€cycle arrest, increases intracellular HSPC ROS levels and DNA damage, and reduces HSPC viability. Those effects involve the activation of the p38 MAPK pathway and are rescued by folinic acid. The effects of LDâ€MTX are more evident in CD34 + CD38High progenitors. In nonâ€cycling HSPC, LDâ€MTX also reduces the proliferative response while preserving their clonogenicity. In summary, HSPC uptake LDâ€MTX differentially according to their cycling state. In turn, LDâ€MTX results in reduced proliferation and the preservation of HSPC clonogenicity.Catalog #: Product Name: 04034 MethoCultâ„¢ H4034 Optimum Catalog #: 04034 Product Name: MethoCultâ„¢ H4034 Optimum ReferenceK. Kudo et al. (Apr 2025) Cell Death & Disease 16 1Targeting metabolic vulnerability by combining NAMPT inhibitors and disulfiram for treatment of recurrent ovarian cancer
Ovarian cancer (OV) has the highest mortality rate among gynecological cancers. As OV progresses, tumor cells spread outside the ovaries to the peritoneal and abdominal cavities, forming cell clusters that float in the ascitic fluid caused by peritonitis carcinomatosa, leading to further dissemination and metastasis. These cell clusters are enriched with cancer stem cells (CSCs) which are responsible for treatment resistance, recurrence, and metastasis. Therefore, targeting CSCs is a potentially effective approach for treating OV. However, understanding how CSCs acquire treatment resistance and identifying targets against CSCs remains challenging. In this study, we demonstrate that 3D-spheroids of OV cell lines exhibit higher stemness than conventional adherent cells. Metabolomics profiling studies have revealed that 3D-spheroids maintain a high-energy state through increased glucose utilization in the citric acid cycle (TCA), efficient nucleotide phosphorylation, and elevated phosphocreatine as an energy buffer. We also found that nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD + production, is highly expressed in OV. Furthermore, the approach based on NAMPT dependence rather than histology found NAMPT to be a potential therapeutic target against CSCs, while also serving as a prognostic indicator in OV. Moreover, we identified a previously unrecognized anti-tumor mechanism whereby disulfiram, an aldehyde dehydrogenase (ALDH) inhibitor, synergistically inhibited mitochondrial function when combined with NAMPT inhibitors - leading to cell cycle arrest in G2/M. Finally, the combination of a NAMPT inhibitor and disulfiram showed significant anti-tumor effects and extended survival in an animal model. Our findings demonstrate the potential of spheroids as a preclinical model for targeting OV CSCs and also indicate that the combination of NAMPT inhibitors and disulfiram is a promising therapeutic strategy to overcome recurrent OV. Subject terms: Ovarian cancer, Metabolomics, Apoptosis, Cancer stem cellsCatalog #: Product Name: 01700 ALDEFLUORâ„¢ Kit Catalog #: 01700 Product Name: ALDEFLUORâ„¢ Kit ReferenceJ. Ene et al. (Apr 2025) Stem Cell Research & Therapy 16 10Biomanufacturing and lipidomics analysis of extracellular vesicles secreted by human blood vessel organoids in a vertical wheel bioreactor
Extracellular vesicles (EVs) derived from human organoids are phospholipid bilayer-bound nanoparticles that carry therapeutic cargo. However, the low yield of EVs remains a critical bottleneck for clinical translation. Vertical-Wheel bioreactors (VWBRs), with unique design features, facilitate the scalable production of EVs secreted by human blood vessel organoids (BVOs) under controlled shear stress, using aggregate- and microcarrier-based culture systems. Human induced pluripotent stem cell-derived BVOs cultured as aggregates or on Synthemax II microcarriers within VWBRs (40 and 80 rpm) were compared to static controls. The organoids were characterized by metabolite profiling, flow cytometry, and gene expression of EV biogenesis markers. EVs were characterized by nanoparticle tracking analysis, electron microscopy, and Western blotting. Lipidomics provided insights into EV lipid composition, while functional assays assessed the impact of EVs in a D-galactose-induced senescence model. VWBR cultures showed more aerobic metabolism and higher expression of EV biogenesis genes compared to the static control. EVs from different conditions were comparable in size, but the yields were significantly higher for microcarrier and dynamic cultures than static aggregates. Lipidomic profiling revealed minimal variation (< 0.36%) in total lipid content; however, distinct differences were identified in lipid chain lengths and saturation levels, affecting key pathways such as sphingolipid and neurotrophin signaling. Human BVO EVs demonstrated the abilities of reducing oxidative stress and increasing cell proliferation in vitro. Human BVOs differentiated in VWBRs (in particular 40 rpm) produce 2–3 fold higher yield of EVs (per mL) than static control. The bio manufactured EVs from VWBRs have exosomal characteristics and therapeutic cargo, showing functional properties in in vitro assays. This innovative approach establishes VWBRs as a scalable platform for producing functional EVs with defined lipid profiles and therapeutic potential, paving the way for future in vivo studies. The online version contains supplementary material available at 10.1186/s13287-025-04317-2.Catalog #: Product Name: 05859 ¹ó°ù±ð³§¸éâ„¢-³§ Catalog #: 05859 Product Name: ¹ó°ù±ð³§¸éâ„¢-³§ ReferenceG. Y. Lee et al. (Apr 2025) BMC Research Notes 18 2Comprehensive single-cell RNA-sequencing study of Tollip deficiency effect in IL-13-stimulated human airway epithelial cells
Toll-interacting protein (Tollip) suppresses excessive pro-inflammatory signaling, but its function in airway epithelial responses to IL-13, a key mediator in allergic diseases, remains unclear. This study investigates Tollip knockdown (TKD) effects in primary human airway epithelial cells using single-cell RNA sequencing, providing the first single-cell analysis of TKD and the first exploring its interaction with IL-13. IL-13 treatment upregulated key genes, including SPDEF, MUC5AC, POSTN, ALOX15, and CCL26, confirming IL-13’s effects and validating our methods. IL-13 reduced TNF-α signaling and epithelial-mesenchymal transition in certain cell types, suggesting a dual role in promoting type 2 inflammation while suppressing Th1-driven inflammation. Tollip deficiency alone significantly amplified TNF-α signaling and inflammatory pathways in goblet, club, and suprabasal cells. Comparisons between TKDIL13 vs IL13 and TKD vs CTR revealed that IL-13 does not substantially alter Tollip deficiency response in most cell types, reinforcing findings in TKD vs CTR. Tollip deficiency alters the response to IL-13 in a cell-type-specific manner, strongly downregulating TNF-α signaling in goblet cells but only weakly in basal and club cells. Tollip deficiency enhances IL-13’s suppression of Th1 inflammatory responses in goblet cells. These novel insights in Tollip-IL-13 interactions offer potential therapeutic targets for asthma and related diseases. The online version contains supplementary material available at 10.1186/s13104-025-07255-7.Catalog #: Product Name: 05001 PneumaCult™-ALI Medium Catalog #: 05001 Product Name: PneumaCult™-ALI Medium ReferenceE. Yi et al. (Apr 2025) Respiratory Research 26 10131An integrated machine learning model of transcriptomic genes in multi-center chronic obstructive pulmonary disease reveals the causal role of TIMP4 in airway epithelial cell
Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome, resulting in inconsistent findings across studies. Identifying a core set of genes consistently involved in COPD pathogenesis, independent of patient variability, is essential. We integrated lung tissue sequencing data from patients with COPD across two centers. We used weighted gene co-expression network analysis and machine learning to identify 13 potential pathogenic genes common to both centers. Additionally, a gene-based model was constructed to distinguish COPD at the molecular level and validated in independent cohorts. Gene expression in specific cell types was analyzed, and Mendelian randomization was used to confirm associations between candidate genes and lung function/COPD. Preliminary in vitro functional validation was performed on prioritized core candidate genes. Tissue inhibitor of metalloproteinase 4 (TIMP4) was identified as a key pathogenic gene and validated in COPD cohorts. Further analysis using single-cell sequencing from mice and patients with COPD revealed that TIMP4 is involved in ciliated cells. In primary human airway epithelial cells cultured at the air-liquid interface, TIMP4 overexpression reduced ciliated cell numbers. We developed a 13-gene model for distinguishing COPD at the molecular level and identified TIMP4 as a potential hub pathogenic gene. This finding provides insights into shared disease mechanisms and positions TIMP4 as a promising therapeutic target for further investigation. The online version contains supplementary material available at 10.1186/s12931-025-03238-1.Catalog #: Product Name: 05001 PneumaCult™-ALI Medium 05040 PneumaCult™-Ex Plus Medium Catalog #: 05001 Product Name: PneumaCult™-ALI Medium Catalog #: 05040 Product Name: PneumaCult™-Ex Plus Medium Safety Data SheetCatalog #: Product Name: 100-0687 Human ACE2 ELISA Kit Catalog #: 100-0687 Product Name: Human ACE2 ELISA Kit ReferenceK. V. Nerum et al. (Apr 2025) Nature Cell Biology 27 5α-Ketoglutarate promotes trophectoderm induction and maturation from naive human embryonic stem cells
Development and lineage choice are driven by interconnected transcriptional, epigenetic and metabolic changes. Specific metabolites, such as α-ketoglutarate (αKG), function as signalling molecules affecting the activity of chromatin-modifying enzymes. However, how metabolism coordinates cell-state changes, especially in human pre-implantation development, remains unclear. Here we uncover that inducing naive human embryonic stem cells towards the trophectoderm lineage results in considerable metabolic rewiring, characterized by αKG accumulation. Elevated αKG levels potentiate the capacity of naive embryonic stem cells to specify towards the trophectoderm lineage. Moreover, increased αKG levels promote blastoid polarization and trophectoderm maturation. αKG supplementation does not affect global histone methylation levels; rather, it decreases acetyl-CoA availability, reduces histone acetyltransferase activity and weakens the pluripotency network. We propose that metabolism functions as a positive feedback loop aiding in trophectoderm fate induction and maturation, highlighting that global metabolic rewiring can promote specificity in cell fate decisions through intricate regulation of signalling and chromatin. Subject terms: Embryonic stem cells, EmbryologyCatalog #: Product Name: 34411 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 Catalog #: 34411 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 Safety Data SheetCatalog #: Product Name: 100-1133 EasySepâ„¢ Human Bone Marrow CD138 Positive Selection Kit Catalog #: 100-1133 Product Name: EasySepâ„¢ Human Bone Marrow CD138 Positive Selection Kit ReferenceY. Li et al. (Apr 2025) Molecular Genetics & Genomic Medicine 13 4SLC26A4 C.317C > A Variant: Functional Analysis and Patientâ€Derived Induced Pluripotent Stem Line Development
SLC26A4 is the second most common cause of hereditary hearing loss worldwide. This gene predominantly harbors pathogenic variants, including splice, nonsense, and missense. Although missense variants are relatively common, their specific effects on protein function remain unclear. Consequently, there is an urgent need to establish an in vitro system to investigate how these variants impact SLC26A4 protein function. Genetic testing was conducted to determine the specific types of underlying genetic variants in patients. Following this, we employed plasmid transfection to evaluate the effects of the variants on both protein expression levels and the protein's subcellular localization. Thereafter, we transformed peripheral blood mononuclear cells (PBMCs) from the proband into induced pluripotent stem cells (iPSCs) through Sendai virusâ€mediated transduction. Genetic testing revealed that the proband carried compound heterozygous variants: SLC26A4 c.919â€2A > G and c.317C > A. The c.317C > A variant markedly decreased the expression levels of SLC26A4 mRNA and its encoded protein. Additionally, it led to the protein's accumulation in the cytoplasm as aggregates. We successfully reprogrammed peripheral blood mononuclear cells from the proband into induced pluripotent stem cells (iPSCs) and verified that these iPSCs retained their pluripotency, differentiation potential, and genetic integrity. These results provide important insights into the mechanisms by which SLC26A4 gene variants lead to hearing loss.Catalog #: Product Name: 05230 STEMdiffâ„¢ Trilineage Differentiation Kit Catalog #: 05230 Product Name: STEMdiffâ„¢ Trilineage Differentiation Kit Safety Data SheetCatalog #: Product Name: 100-1133 EasySepâ„¢ Human Bone Marrow CD138 Positive Selection Kit Catalog #: 100-1133 Product Name: EasySepâ„¢ Human Bone Marrow CD138 Positive Selection Kit ReferenceP. R. Nano et al. (Apr 2025) Nature Neuroscience 28 5Integrated analysis of molecular atlases unveils modules driving developmental cell subtype specification in the human cortex
Human brain development requires generating diverse cell types, a process explored by single-cell transcriptomics. Through parallel meta-analyses of the human cortex in development (seven datasets) and adulthood (16 datasets), we generated over 500 gene co-expression networks that can describe mechanisms of cortical development, centering on peak stages of neurogenesis. These meta-modules show dynamic cell subtype specificities throughout cortical development, with several developmental meta-modules displaying spatiotemporal expression patterns that allude to potential roles in cell fate specification. We validated the expression of these modules in primary human cortical tissues. These include meta-module 20, a module elevated in FEZF2 + deep layer neurons that includes TSHZ3, a transcription factor associated with neurodevelopmental disorders. Human cortical chimeroid experiments validated that both FEZF2 and TSHZ3 are required to drive module 20 activity and deep layer neuron specification but through distinct modalities. These studies demonstrate how meta-atlases can engender further mechanistic analyses of cortical fate specification. Subject terms: Developmental neurogenesis, Gene regulatory networksCatalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Items 565 to 576 of 14010 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2905 items
- Reference 7990 items
- Safety Data Sheet 3053 items
- Technical Manual 62 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 4 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 742 items
- Infectious Diseases 4 items
- Neuroscience 492 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 753 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 252 items
- STEMdiff 55 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 26 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 382 items
- Neurons 136 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 40 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.