Product Information
Items 397 to 408 of 14067 total
- ReferenceA. M. Chenoweth et al. (Oct 2025) Cancer Research 85 22
An Fc-Engineered Glycomodified Antibody Supports Proinflammatory Activation of Immune Effector Cells and Restricts Progression of Breast Cancer
Assessment of Fc receptors and immune cells in breast cancer enables development of tailored engineering strategies for tumor-targeting monoclonal antibodies with enhanced immune-stimulating and anticancer attributes by combining glycoengineering and Fc mutations. AbstractFc engineering to enhance antibody effector functions harbors the potential to improve therapeutic effects. Understanding FcγR expression and distribution in the tumor microenvironment prior to and following treatment may help guide immune-engaging antibody design and patient stratification. In this study, we investigated FcR-expressing immune effector cells in HER2+ and triple-negative breast cancers (TNBC), including neoadjuvant chemotherapy–resistant disease. FcγRIIIa expression, FcγRIIIa+ NK cells, and classically activated (M1-like) macrophages correlated with improved anti-HER2 antibody efficacy. FcγRIIIa protein and FcγRIIIa+ NK cells and macrophages were present in primary TNBC and retained in treatment-resistant tumors. FcγRIIIa was spatially associated with folate receptor alpha–positive (FRα+) tumor areas at baseline and in residual tumors following neoadjuvant chemotherapy. Wild-type and Fc-engineered antibodies recognizing two breast cancer–associated antigens, HER2 and the emerging TNBC target FRα, were designed and generated to have increased FcγRIIIa-expressing effector cell engagement. The combination of glycoengineering, including fucose removal from the N-linked Fc glycan, and Fc point mutations greatly increased antibody affinity for and retention on FcγRIIIa. The Fc-engineered antibodies enhanced immune effector activity against HER2+ breast cancer and TNBC, altering proinflammatory cytokine production by NK cells and tumor-conditioned macrophages and skewing macrophages toward proinflammatory states. Furthermore, the Fc-engineered antibodies restricted orthotopic HER2+ and FRα+ breast cancer xenograft growth at doses suboptimal for equivalent wild-type antibodies and recruited FcγRIIIa-expressing cells into tumors. Antibody design through combined glycoengineering and Fc point mutations to enhance FcγRIIIa engagement of tumor-infiltrating effector cells may be a promising strategy for developing therapies for patients with aggressive and treatment-resistant breast cancers.Significance:Assessment of Fc receptors and immune cells in breast cancer enables development of tailored engineering strategies for tumor-targeting monoclonal antibodies with enhanced immune-stimulating and anticancer attributes by combining glycoengineering and Fc mutations.Catalog #: Product Name: 15025 RosetteSep™ Human NK Cell Enrichment Cocktail Catalog #: 15025 Product Name: RosetteSep™ Human NK Cell Enrichment Cocktail Safety Data SheetCatalog #: Product Name: 100-1616 Anti-Mouse CD69 Antibody, Clone H1.2F3, PE Catalog #: 100-1616 Product Name: Anti-Mouse CD69 Antibody, Clone H1.2F3, PE ReferenceC. Nguyen et al. (Oct 2025) Nature Immunology 26 11Transcriptional and epigenetic targets of MEF2C in human microglia contribute to cellular functions related to autism risk and age-related disease
MEF2C encodes a transcription factor that is critical in nervous system development. Here, to examine disease-associated functions of MEF2C in human microglia, we profiled microglia differentiated from isogenic MEF2C-haploinsufficient and MEF2C-knockout induced pluripotent stem cell lines. Complementary transcriptomic and functional analyses revealed that loss of MEF2C led to a hyperinflammatory phenotype with broad phagocytic impairment, lipid accumulation, lysosomal dysfunction and elevated basal inflammatory cytokine secretion. Genome-wide profiling of MEF2C-bound sites coupled with the active regulatory landscape enabled inference of its transcriptional functions and potential mechanisms for MEF2C-associated cellular functions. Transcriptomic and epigenetic approaches identified substantial overlap with idiopathic autism datasets, suggesting a broader role of human microglial MEF2C dysregulation in idiopathic autism. In a mouse xenotransplantation model, loss of MEF2C led to morphological, lysosomal and lipid abnormalities in human microglia in vivo. Together, these studies reveal mechanisms by which reduced microglial MEF2C could contribute to the development of neurological diseases. Coufal and colleagues generated microglia from human iPS cells to examine mechanistic roles of the transcription factor MEF2C and how these roles might relate to the autism phenotype seen following the loss of MEF2C in human microglia.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ ReferenceT. Pamonsupornwichit et al. (Oct 2025) Cancer Immunology, Immunotherapy : CII 74 11Overcoming NK cell resistance in triple-negative breast cancer via adcc with a humanized anti-CD147 antibody
Triple-negative breast cancer (TNBC) is an aggressive and clinically challenging subtype defined by the absence of estrogen receptor, progesterone receptor, and HER2 amplification, resulting in poor prognosis and limited therapeutic options. Targeting alternative molecular pathways is urgently needed to overcome resistance and improve patient outcomes. CD147 has emerged as surface marker associated with tumor progression and immune evasion. In this study, CD147 and MHC class I—a key inhibitory ligand for natural killer cells—were analyzed in breast cancer cell lines (MCF7, MDA-MB-453, MDA-MB-231, and HCC38) using flow cytometry. The therapeutic efficacy of a humanized anti-CD147 monoclonal antibody (HuM6-1B9) was evaluated for its capacity to potentiate antibody-dependent cellular cytotoxicity (ADCC). HuM6-1B9 demonstrated the strong binding to MDA-MB-231 (KD = 4.982 nM) and HCC38 (KD = 4.523 nM), which are representative TNBC cell lines. In 3D spheroid models, HuM6-1B9 significantly enhanced PBMC-mediated ADCC, leading to a marked reduction in TNBC spheroid viability. Co-culture of CFSE-labeled MDA-MB-231 and HCC38 cells with primary NK cells confirmed robust ADCC, achieving 50% and 70% cytotoxicity, respectively, despite high MHC class I expression. Live-cell imaging demonstrated caspase-3/7 activation consistent with apoptosis in NK-targeted tumor cells, while CD107a degranulation and IFN-γ secretion confirmed the functional contribution of HuM6-1B9 to ADCC enhancement. Importantly, HuM6-1B9 did not promote migration or invasion in MDA-MB-231 cells, supporting its safety profile regarding metastasis. Collectively, these findings establish HuM6-1B9 as a promising immunotherapeutic candidate that overcomes immune resistance and selectively eliminates TNBC cells through ADCC without enhancing metastatic potential. By integrating mechanistic assays of NK cytotoxicity, apoptosis, and 3D tumor spheroids, this study provides clinically relevant insights underscoring the translational potential of HuM6-1B9 in TNBC immunotherapy.Catalog #: Product Name: 17955 EasySepâ„¢ Human NK Cell Isolation Kit Catalog #: 17955 Product Name: EasySepâ„¢ Human NK Cell Isolation Kit Safety Data SheetCatalog #: Product Name: 100-1615 Anti-Mouse CD69 Antibody, Clone H1.2F3, PE-Cy7 Catalog #: 100-1615 Product Name: Anti-Mouse CD69 Antibody, Clone H1.2F3, PE-Cy7 ReferenceN. Li et al. (Oct 2025) Journal of Cellular and Molecular Medicine 29 19BNIP3L/BNIP3â€Mediated Mitophagy Contributes to the Maintenance of Ovarian Cancer Stem Cells
Ovarian cancer remains the most lethal gynaecological malignancy, with tumour recurrence and chemoresistance posing significant therapeutic challenges. Emerging evidence suggests that cancer stem cells (CSCs), a rare subpopulation within tumours with selfâ€renewal and differentiation capacities, contribute to these hurdles. Therefore, elucidating the mechanisms that sustain CSCs is critical for improving treatment strategies. Mitophagy, a selective process for eliminating damaged mitochondria, plays a key role in maintaining cellular homeostasis, including CSC survival. Our study demonstrates that ovarian CSCs exhibit enhanced mitophagy, accompanied by elevated expression of the mitochondrial outer membrane receptors BNIP3 and BNIP3L. Knockdown of BNIP3 or BNIP3L significantly reduces mitophagy and impairs CSC selfâ€renewal, indicating that receptorâ€mediated mitophagy is essential for CSC maintenance. Mechanistically, we identify that hyperactivated NFâ€ÎºB signalling drives the upregulation of BNIP3 and BNIP3L in ovarian CSCs. Inhibition of NFâ€ÎºB signalling, either via p65 knockdown or pharmacological inhibitors, effectively suppresses mitophagy. Furthermore, we demonstrate that elevated DNAâ€PK expression contributes to the constitutive activation of NFâ€ÎºB signalling, thereby promoting mitophagy in ovarian CSCs. In summary, our findings establish that BNIP3/BNIP3Lâ€mediated mitophagy, driven by DNAâ€PKâ€dependent NFâ€ÎºB hyperactivation, is essential for CSC maintenance. Targeting the DNAâ€PK/NFâ€ÎºB/BNIP3Lâ€BNIP3 axis to disrupt mitochondrial quality control in CSCs represents a promising therapeutic strategy to prevent ovarian cancer recurrence and metastasis.Catalog #: Product Name: 01700 ALDEFLUORâ„¢ Kit Catalog #: 01700 Product Name: ALDEFLUORâ„¢ Kit ReferenceLi et al. (Oct 2025) Journal of Hematology & Oncology 18Targeting triple-negative breast cancer using cord-blood CD34⺠HSPC-derived mesothelin-specific CAR-NKT cells with potent antitumor activity
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of ER, PR, and HER2 expression. Its aggressive behavior, high degree of tumor heterogeneity, and immunosuppressive tumor microenvironment (TME) are associated with poor clinical outcomes, rapid disease progression, and limited therapeutic options. Although chimeric antigen receptor (CAR)-engineered T cell therapy has shown certain promise, its applicability in TNBC is hindered by antigen escape, TME-mediated suppression, and the logistical constraints of autologous cell production. In this study, we employed hematopoietic stem and progenitor cell (HSPC) gene engineering and a feeder-free HSPC differentiation culture to generate allogeneic IL-15-enhanced, mesothelin-specific CAR-engineered invariant natural killer T ( Allo15 MCAR-NKT) cells. These cells demonstrated robust and multifaceted antitumor activity against TNBC, mediated by CAR- and NK receptor-dependent cytotoxicity, as well as selective targeting of CD1d + TME immunosuppressive cells through their TCR. In both orthotopic and metastatic TNBC xenograft models, Allo15 MCAR-NKT cells demonstrated potent antitumor activity, associated with robust effector and cytotoxic phenotypes, low exhaustion, and a favorable safety profile without inducing graft-versus-host disease. Together, these results support Allo15 MCAR-NKT cells as a next-generation, off-the-shelf immunotherapy with strong therapeutic potential for TNBC, particularly in the context of metastasis, immune evasion, and treatment resistance. The online version contains supplementary material available at 10.1186/s13045-025-01736-9.Catalog #: Product Name: 09600 StemSpan™ SFEM 09605 StemSpan™ SFEM II 10970 ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator 04330 MethoCult™ H4330 09940 StemSpan™ T Cell Generation Kit 100-0785 ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09605 Product Name: StemSpan™ SFEM II Catalog #: 10970 Product Name: ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator Catalog #: 04330 Product Name: MethoCult™ H4330 Catalog #: 09940 Product Name: StemSpan™ T Cell Generation Kit Catalog #: 100-0785 Product Name: ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator Safety Data SheetCatalog #: Product Name: 100-1614 Anti-Mouse TCR Beta Antibody, Clone H57-597, PerCP-Cy5.5 Catalog #: 100-1614 Product Name: Anti-Mouse TCR Beta Antibody, Clone H57-597, PerCP-Cy5.5 Safety Data SheetCatalog #: Product Name: 100-1613 Anti-Mouse TCR Beta Antibody, Clone H57-597, FITC Catalog #: 100-1613 Product Name: Anti-Mouse TCR Beta Antibody, Clone H57-597, FITC ReferenceA. Becerra-Calixto et al. (Oct 2025) Journal of Neuroinflammation 22A neuroimmune cerebral assembloid model to study the pathophysiology of familial Alzheimer’s disease
Alzheimer’s disease (AD) is the leading cause of dementia globally. The accumulation of amyloid and tau proteins, neuronal cell death and neuroinflammation are seen with AD progression, resulting in memory and cognitive impairment. Microglia are crucial for AD progression as they engage with neural cells and protein aggregates to regulate amyloid pathology and neuroinflammation. Recent studies indicate that microglia contribute to the propagation of amyloid beta (Aβ) via their immunomodulatory functions including Aβ phagocytosis and inflammatory cytokine production. Three-dimensional cell culture techniques provide the opportunity to study pathophysiological changes in AD in human-derived samples that are difficult to recapitulate in animal models (e.g., transgenic mice). However, these models often lack immune cells such as microglia, which play a critical role in AD pathophysiology. In this study, we developed a neuroimmune assembloid model by integrating cerebral organoids (COs) with induced microglia-like cells (iMGs) derived from human induced pluripotent stem cells from familial AD patient with PSEN2 mutation. After 120 days in culture, we found that iMGs were successfully integrated within the COs. Interestingly, our assembloids displayed histological, functional and transcriptional features of the pro-inflammatory environment seen in AD, including amyloid plaque-like and neurofibrillary tangle-like structures, reduced microglial phagocytic capability, and enhanced neuroinflammatory and apoptotic gene expression. In conclusion, our neuroimmune assembloid model effectively replicates the inflammatory phenotype and amyloid pathology seen in AD. The online version contains supplementary material available at 10.1186/s12974-025-03544-x.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 05310 STEMdiffâ„¢ Hematopoietic Kit 100-0019 STEMdiffâ„¢ Microglia Differentiation Kit 100-0020 STEMdiffâ„¢ Microglia Maturation Kit 08570 STEMdiffâ„¢ Cerebral Organoid Kit Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05310 Product Name: STEMdiffâ„¢ Hematopoietic Kit Catalog #: 100-0019 Product Name: STEMdiffâ„¢ Microglia Differentiation Kit Catalog #: 100-0020 Product Name: STEMdiffâ„¢ Microglia Maturation Kit Catalog #: 08570 Product Name: STEMdiffâ„¢ Cerebral Organoid Kit Safety Data SheetCatalog #: Product Name: 100-1612 Anti-Mouse TCR Beta Antibody, Clone H57-597, PE Catalog #: 100-1612 Product Name: Anti-Mouse TCR Beta Antibody, Clone H57-597, PE ReferenceR. B. Kang et al. (Oct 2025) Nature Communications 16Human pancreatic α-cell heterogeneity and trajectory inference analyses reveal SMOC1 as a β-cell dedifferentiation gene
β-cell dysfunction and dedifferentiation towards an α-cell-like phenotype are hallmarks of type 2 diabetes. However, the cell subtypes involved in β-to-α-cell transition are unknown. Using single-cell and single-nucleus RNA-seq, RNA velocity, PAGA/cell trajectory inference, and gene commonality, we interrogated α-β-cell fate switching in human islets. We found five α-cell subclusters with distinct transcriptomes. PAGA analysis showed bifurcating cell trajectories in non-diabetic while unidirectional cell trajectories from β-to-α-cells in type 2 diabetes islets suggesting dedifferentiation towards α-cells. Ten genes comprised the common signature genes in trajectories towards α-cells. Among these, the α-cell gene SMOC1 was expressed in β-cells in type 2 diabetes. Enhanced SMOC1 expression in β-cells decreased insulin expression and secretion and increased β-cell dedifferentiation markers. Collectively, these studies reveal differences in α-β-cell trajectories in non-diabetes and type 2 diabetes human islets, identify signature genes for β-to-α-cell trajectories, and discover SMOC1 as an inducer of β-cell dysfunction and dedifferentiation. Subject terms: Cell signalling, Diabetes, DifferentiationCatalog #: Product Name: 34411 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 Catalog #: 34411 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 Items 397 to 408 of 14067 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2910 items
- Reference 8037 items
- Safety Data Sheet 3058 items
- Technical Manual 62 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 4 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 742 items
- Infectious Diseases 4 items
- Neuroscience 492 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 753 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 252 items
- STEMdiff 55 items
- STEMprep 1 item
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 26 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 382 items
- Neurons 136 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 40 items
Loading...Copyright © 2026 º£½ÇÆÆ½â°æ. All rights reserved.