Product Information
Items 349 to 360 of 14067 total
- ReferenceD. Cuffaro et al. (Nov 2025) Scientific Reports 15
Anti-tumor efficacy and Vδ2 T-cell activation via EGFR antibody-drug conjugates featuring novel aminobisphosphonates
Antibody–drug conjugates (ADCs) represent a promising strategy in cancer therapy, enabling the targeted delivery of cytotoxic agents to tumor cells. In this study, we developed and characterized novel ADCs combining the anti-EGFR monoclonal therapeutic antibody Cetuximab (Cet) with two aminobisphosphonates (N-BPs) analogues of zoledronic acid (ZA): DC310 and the aminothiazole DC315. These conjugates aim to enhance antitumor efficacy of Cet in colorectal cancer (CRC) by both directly inhibiting tumor cell growth and activating Vδ2 T lymphocytes. We optimized the drug-antibody ratio (DAR), achieving significantly higher DARs compared to previously reported Cet-ZA conjugate, particularly with Cet-DC315 (DAR ≈ 23). Both ADCs retained selective EGFR binding in CRC cell lines and patient-derived organoids (PDO). Functionally, Cet-DC315 markedly inhibited proliferation of EGFR⺠CRC cell lines in conventional cultures and 3D spheroids. Furthermore, Cet-DC-315 uniquely induced expansion and cytotoxic activation of Vδ2 T cells in co-cultures with CRC cell lines, PDO, and primary tumor samples. These findings suggest that ADCs incorporating novel N-BPs such as DC315 represent a potent approach for dual antitumor targeting through direct cytostatic effects and immune activation, offering a potential therapeutic advantage in the treatment of EGFR+ colorectal cancer.Catalog #: Product Name: 34411 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 Catalog #: 34411 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 Safety Data SheetCatalog #: Product Name: 100-1633 Anti-Mouse CD8a Antibody, Clone 2.43 Catalog #: 100-1633 Product Name: Anti-Mouse CD8a Antibody, Clone 2.43 ReferenceQ. Yin et al. (Nov 2025) Nature Communications 16Transcription factor ZNF263 primes human embryonic stem cells for pluripotency dissolution and lineage commitment
Conventional human embryonic stem cells (hESCs) are capable of self-renewal and simultaneously poised for differentiation. But the mechanisms underlying this primed pluripotent state, which endows them with elevated responsiveness to differentiation cues, remain largely underexplored. Especially, little is known about the pivotal transcription factors (TFs) that orchestrate hESCs towards primed pluripotency. Here, we report a function of TF ZNF263 in pluripotency priming. Genetic and functional assays reveal that ZNF263 directly initiates the incipient expression of early differentiation genes and concurrently dampens the core pluripotency circuitry in hESCs, greatly tilting the balance from pluripotency maintenance to lineage priming. Importantly, ZNF263 deficiency markedly impairs pluripotency dissolution and multi-lineage differentiation in hESCs, particularly toward ectoderm. Moreover, single-cell transcriptomic profiling reveals that ZNF263 promotes the priming of cell fate commitment in hESCs, suggesting its indispensable requirement for pluripotency priming and lineage commitment continuum. Together, we demonstrate the role of ZNF263 in establishing the primed pluripotent state in hESCs and facilitating their differentiation into primary germ layer lineages. Human embryonic stem cells are simultaneously capable of self-renewal and poised for differentiation. Here, the authors show a role for the ZNF263 transcription factor promotes primed pluripotency and facilitates differentiation into primary germ layer lineages.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 ReferenceF. Olayinka-Adefemi et al. (Nov 2025) PLOS Pathogens 21 11PI3Kdelta-driven expansion of regulatory B cells impairs protective immune responses to Trypanosoma congolense parasite infection
Phosphatidylinositol 3-kinase delta (PI3KCD) is a critical signaling enzyme for B cell development, activation, function and immune regulation. Gain-of-function mutations in PI3KCD result in the congenital immunodeficiency known as Activated PI3KCD Syndrome (APDS). APDS patients are prone to repeated infections and other serious clinical manifestations. Here, we determine how B cell-intrinsic expression of the APDS-associated PI3KCDE1021K mutation impacts immune responses to the protozoan parasite Trypanosoma congolense. PI3KCDE1021K/B mice exhibit a significant expansion of IL10-expressing B cells within the spleen and peritoneal cavity, which was associated with impaired control of T. congolense infection. Despite the generation of robust germinal center, plasma cell and antibody responses, PI3KCDE1021K/B mice show elevation in the first wave of parasitemia and increased mortality. We further characterize the phenotype of the expanded IL10-producing B cell population in PI3KCDE1021K/B mice, which show hallmarks of innate-like regulatory B cells (Breg) and expression of multiple inhibitory molecules. This Breg expansion is associated with reduced IFNγ/IL10 ratio, reduced TNFα production and impaired activation of myeloid cells, likely compromising the innate response to infection. These findings highlight the profound impact of dysregulated PI3KCD activity on regulatory B cells that can functionally impair innate immune responses controlling a systemic parasite protozoan disease. Author summaryB cells and antibodies play a critical role in the immune response to Trypanosome parasites. Molecular signaling networks within B cells can control the type of response generated during infection. Here, we studied how a genetic variant in the signaling enzyme PI3KCD, previously linked to human immune deficiencies, impacts B cell responses to Trypanosome infection. We find that mice expressing the PI3KCDE1021K mutation in their B cells show impaired control of Trypanosome infection, and alterations in several aspects of the immune response. Specifically, we noted these mice poorly control parasite growth within the first week of infection, a timeframe where specific antibody responses have not yet been generated. We noted an altered balance between pro-inflammatory and anti-inflammatory cytokine mediators produced within the first week of infection. This was associated with high numbers of regulatory B cells expressing multiple molecules capable of inhibiting other cells of the immune system. We further found that these mice show functional alterations in other critical immune cell types, such as macrophages and T cells. These findings highlight the impact of dysregulated PI3KCD activity on regulatory B cells that can impair immune responses controlling a systemic parasite protozoan disease.Catalog #: Product Name: 19854 EasySep™ Mouse B Cell Isolation Kit Catalog #: 19854 Product Name: EasySep™ Mouse B Cell Isolation Kit Safety Data SheetCatalog #: Product Name: 100-1632 Anti-Mouse KLRG1 Antibody, Clone 2F1, APC Catalog #: 100-1632 Product Name: Anti-Mouse KLRG1 Antibody, Clone 2F1, APC ReferenceP. E. Capendale et al. (Nov 2025) Cellular and Molecular Life Sciences: CMLS 82 1Parechovirus-3 infection disrupts immunometabolism and leads to glutamate excitotoxicity in neural organoids
Parechovirus ahumpari 3 (HPeV-3) is among the main agents causing severe neonatal neurological infections such as encephalitis and meningitis. However, the underlying molecular mechanisms and changes to the host cellular landscape leading to neurological disease has been understudied. Through quantitative proteomic analysis of HPeV-3 infected neural organoids, we identified unique metabolic changes following HPeV-3 infection that indicate immunometabolic dysregulation. Protein and pathway analyses showed significant alterations in neurotransmission and potentially, neuronal excitotoxicity. Elevated levels of extracellular glutamate, lactate dehydrogenase (LDH), and neurofilament light (NfL) confirmed glutamate excitotoxicity to be a key mechanism contributing to neuronal toxicity in HPeV-3 infection and can lead to apoptosis induced by caspase signaling. These insights are pivotal in delineating the metabolic landscape following severe HPeV-3 CNS infection and may identify potential host targets for therapeutic interventions.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 08581 STEMdiffâ„¢ SMADi Neural Induction Kit 08570 STEMdiffâ„¢ Cerebral Organoid Kit Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 08581 Product Name: STEMdiffâ„¢ SMADi Neural Induction Kit Catalog #: 08570 Product Name: STEMdiffâ„¢ Cerebral Organoid Kit ReferenceA. Azari-Pour et al. (Nov 2025) Scientific Reports 15Label-free estimation of regulatory T cell activation markers using Raman spectroscopy with machine learning
Regulatory T cells are a class of T lymphocytes which respond to activation signals by expanding their cell numbers, and whose culturing and expansion are of significant clinical interest. Cellular activation states are used to inform process control decisions such as restimulation and can be probed with experimental measurements of cell surface markers. However, these measurements are expensive, time-consuming, and invasive, and an urgent need exists for devising a non-invasive method for activation state monitoring that could be deployed on-line. Raman spectroscopy is a label-free and information-rich optical method that, when coupled to data analytical methods, can ameliorate these experimental issues. In this work, we quantitatively estimated experimental measurements of regulatory T cell activation markers with high accuracy. We simulated a clinical manufacturing setting by building an L1-regularized least-squares model with spectroscopic data from six regulatory T cell donors. Then, we validated the constructed model by accurately estimating different experimental measurements of biomarker values from two external donors, unseen by the model. We have devised a robust program to effectively estimate the activation state of regulatory T cells. We anticipate our method to be used with on-line Raman probes integrated into cell manufacturing devices for label-free monitoring of these processes.Catalog #: Product Name: 100-0956 ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó Catalog #: 100-0956 Product Name: ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó Safety Data SheetCatalog #: Product Name: 100-1631 Anti-Mouse KLRG1 Antibody, Clone 2F1, PE Catalog #: 100-1631 Product Name: Anti-Mouse KLRG1 Antibody, Clone 2F1, PE ReferenceN. White et al. (Nov 2025) Nature Communications 16Unveiling the cut-and-repair cycle of designer nucleases in human stem and T cells via CLEAR-time dPCR
DNA repair mechanisms in human primary cells, including error-free repair, and, recurrent nuclease cleavage events, remain largely uncharacterised. We elucidate gene-editing related repair processes using Cleavage and Lesion Evaluation via Absolute Real-time dPCR (CLEAR-time dPCR), an ensemble of multiplexed dPCR assays that quantifies genome integrity at targeted sites. Utilising CLEAR-time dPCR we track active DSBs, small indels, large deletions, and other aberrations in absolute terms in clinically relevant edited cells, including HSPCs, iPSCs, and T-cells. By quantifying up to 90% of loci with unresolved DSBs, CLEAR-time dPCR reveals biases inherent to conventional mutation screening assays. Furthermore, we accurately quantify DNA repair precision, revealing prevalent scarless repair after blunt and staggered end DSBs and recurrent nucleases cleavage. This work provides one of the most precise analyses of DNA repair and mutation dynamics, paving the way for mechanistic studies to advance gene therapy, designer editors, and small molecule discovery. Quantifying genomic aberrations resulting from designer nucleases activity is essential for gene therapy clinical translation. Here, the authors present a modular digital PCR technique that profiles DNA repair precision and cut-repair cycles at the edited loci, exposing current evaluation biases.Catalog #: Product Name: 09600 StemSpanâ„¢ SFEM Catalog #: 09600 Product Name: StemSpanâ„¢ SFEM ReferenceB. Guragain et al. (Nov 2025) NPJ Regenerative Medicine 10Optical mapping of the interface between iPSC-derived grafts and swine myocardium suggests potential arrhythmia mechanisms
We used high-resolution optical mapping (~50 µm) to investigate potential arrhythmia mechanisms following transplantation of engineered cardiac tissue. We induced myocardial infarction in 6 immunosuppressed pigs and implanted cardiac spheroids into the border zone. One week later, 600-µm-thick cardiac slices containing implanted spheroids were harvested and electrical propagation was imaged. Histology showed low connexin-43 expression, scar, and misaligned muscle fibers at the graft-host interface. We observed propagation from host-to-graft in 10 slices from 3 pigs. Host-graft electrical bridges were spaced by millimeters. Propagation was ~4-fold slower in the graft than host. One graft beat spontaneously, but activation did not propagate from graft-to-host in this, or any other slice. We did not observe reentry, but slow in-graft conduction and sparse electrical bridges provided opportunity for reentry induction. These data reveal potential for reentrant or focal arrhythmias 1 week post-implant, which may resolve with maturation of the graft and the graft-host interface.Catalog #: Product Name: 05990 °Õ±ð³§¸éâ„¢-·¡8â„¢ Catalog #: 05990 Product Name: °Õ±ð³§¸éâ„¢-·¡8â„¢ Safety Data SheetCatalog #: Product Name: 100-1630 Anti-Mouse CD127 Antibody, Clone A7R34, PE-Cy7 Catalog #: 100-1630 Product Name: Anti-Mouse CD127 Antibody, Clone A7R34, PE-Cy7 ReferenceK. E. Ashworth et al. (Nov 2025) Investigative Ophthalmology & Visual Science 66 14USH2A-Mutated Human Retinal Organoids Model Rod–Cone Dystrophy
USH2A mutations are the leading cause of autosomal recessive retinitis pigmentosa (RP), a progressive blinding disease marked by photoreceptor degeneration. Animal models fail to recapitulate the features of USH2A RP seen in humans, and its earliest pathogenic events remain unknown. Here, we established a human model of USH2A RP using retinal organoids derived from patient induced pluripotent stem cells and CRISPR-Cas9-engineered isogenic-USH2A−/− induced pluripotent stem cells. Methods: We assessed organoids for cellular, molecular, and morphological defects using serial live imaging and whole organoid and fixed section analyses. Results: Both patient-derived and isogenic-USH2A−/− organoids showed preferential rod photoreceptor loss followed by widespread degeneration, consistent with the clinical phenotype. Additionally, isogenic-USH2A−/− organoids showed early defects in proliferation and structure. Conclusions: Our findings suggest that molecular changes precede overt photoreceptor loss in USH2A RP, and pathogenesis may begin before clinical symptoms emerge. By defining early and late disease features, we provide new insight on the developmental origins of USH2A RP to guide therapeutic strategies.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Items 349 to 360 of 14067 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2910 items
- Reference 8037 items
- Safety Data Sheet 3058 items
- Technical Manual 62 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 4 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 742 items
- Infectious Diseases 4 items
- Neuroscience 492 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 753 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 252 items
- STEMdiff 55 items
- STEMprep 1 item
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 26 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 382 items
- Neurons 136 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 40 items
Loading...Copyright © 2026 º£½ÇÆÆ½â°æ. All rights reserved.