Product Information
Items 349 to 360 of 14010 total
- Safety Data Sheet
Catalog #: Product Name: 100-1615 Anti-Mouse CD69 Antibody, Clone H1.2F3, PE-Cy7 Catalog #: 100-1615 Product Name: Anti-Mouse CD69 Antibody, Clone H1.2F3, PE-Cy7 - ReferenceN. Li et al. (Oct 2025) Journal of Cellular and Molecular Medicine 29 19
BNIP3L/BNIP3â€Mediated Mitophagy Contributes to the Maintenance of Ovarian Cancer Stem Cells
Ovarian cancer remains the most lethal gynaecological malignancy, with tumour recurrence and chemoresistance posing significant therapeutic challenges. Emerging evidence suggests that cancer stem cells (CSCs), a rare subpopulation within tumours with selfâ€renewal and differentiation capacities, contribute to these hurdles. Therefore, elucidating the mechanisms that sustain CSCs is critical for improving treatment strategies. Mitophagy, a selective process for eliminating damaged mitochondria, plays a key role in maintaining cellular homeostasis, including CSC survival. Our study demonstrates that ovarian CSCs exhibit enhanced mitophagy, accompanied by elevated expression of the mitochondrial outer membrane receptors BNIP3 and BNIP3L. Knockdown of BNIP3 or BNIP3L significantly reduces mitophagy and impairs CSC selfâ€renewal, indicating that receptorâ€mediated mitophagy is essential for CSC maintenance. Mechanistically, we identify that hyperactivated NFâ€ÎºB signalling drives the upregulation of BNIP3 and BNIP3L in ovarian CSCs. Inhibition of NFâ€ÎºB signalling, either via p65 knockdown or pharmacological inhibitors, effectively suppresses mitophagy. Furthermore, we demonstrate that elevated DNAâ€PK expression contributes to the constitutive activation of NFâ€ÎºB signalling, thereby promoting mitophagy in ovarian CSCs. In summary, our findings establish that BNIP3/BNIP3Lâ€mediated mitophagy, driven by DNAâ€PKâ€dependent NFâ€ÎºB hyperactivation, is essential for CSC maintenance. Targeting the DNAâ€PK/NFâ€ÎºB/BNIP3Lâ€BNIP3 axis to disrupt mitochondrial quality control in CSCs represents a promising therapeutic strategy to prevent ovarian cancer recurrence and metastasis.Catalog #: Product Name: 01700 ALDEFLUORâ„¢ Kit Catalog #: 01700 Product Name: ALDEFLUORâ„¢ Kit ReferenceLi et al. (Oct 2025) Journal of Hematology & Oncology 18Targeting triple-negative breast cancer using cord-blood CD34⺠HSPC-derived mesothelin-specific CAR-NKT cells with potent antitumor activity
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of ER, PR, and HER2 expression. Its aggressive behavior, high degree of tumor heterogeneity, and immunosuppressive tumor microenvironment (TME) are associated with poor clinical outcomes, rapid disease progression, and limited therapeutic options. Although chimeric antigen receptor (CAR)-engineered T cell therapy has shown certain promise, its applicability in TNBC is hindered by antigen escape, TME-mediated suppression, and the logistical constraints of autologous cell production. In this study, we employed hematopoietic stem and progenitor cell (HSPC) gene engineering and a feeder-free HSPC differentiation culture to generate allogeneic IL-15-enhanced, mesothelin-specific CAR-engineered invariant natural killer T ( Allo15 MCAR-NKT) cells. These cells demonstrated robust and multifaceted antitumor activity against TNBC, mediated by CAR- and NK receptor-dependent cytotoxicity, as well as selective targeting of CD1d + TME immunosuppressive cells through their TCR. In both orthotopic and metastatic TNBC xenograft models, Allo15 MCAR-NKT cells demonstrated potent antitumor activity, associated with robust effector and cytotoxic phenotypes, low exhaustion, and a favorable safety profile without inducing graft-versus-host disease. Together, these results support Allo15 MCAR-NKT cells as a next-generation, off-the-shelf immunotherapy with strong therapeutic potential for TNBC, particularly in the context of metastasis, immune evasion, and treatment resistance. The online version contains supplementary material available at 10.1186/s13045-025-01736-9.Catalog #: Product Name: 09600 StemSpan™ SFEM 09605 StemSpan™ SFEM II 10970 ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator 04330 MethoCult™ H4330 09940 StemSpan™ T Cell Generation Kit 100-0785 ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09605 Product Name: StemSpan™ SFEM II Catalog #: 10970 Product Name: ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator Catalog #: 04330 Product Name: MethoCult™ H4330 Catalog #: 09940 Product Name: StemSpan™ T Cell Generation Kit Catalog #: 100-0785 Product Name: ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator Safety Data SheetCatalog #: Product Name: 100-1614 Anti-Mouse TCR Beta Antibody, Clone H57-597, PerCP-Cy5.5 Catalog #: 100-1614 Product Name: Anti-Mouse TCR Beta Antibody, Clone H57-597, PerCP-Cy5.5 Safety Data SheetCatalog #: Product Name: 100-1613 Anti-Mouse TCR Beta Antibody, Clone H57-597, FITC Catalog #: 100-1613 Product Name: Anti-Mouse TCR Beta Antibody, Clone H57-597, FITC ReferenceA. Becerra-Calixto et al. (Oct 2025) Journal of Neuroinflammation 22A neuroimmune cerebral assembloid model to study the pathophysiology of familial Alzheimer’s disease
Alzheimer’s disease (AD) is the leading cause of dementia globally. The accumulation of amyloid and tau proteins, neuronal cell death and neuroinflammation are seen with AD progression, resulting in memory and cognitive impairment. Microglia are crucial for AD progression as they engage with neural cells and protein aggregates to regulate amyloid pathology and neuroinflammation. Recent studies indicate that microglia contribute to the propagation of amyloid beta (Aβ) via their immunomodulatory functions including Aβ phagocytosis and inflammatory cytokine production. Three-dimensional cell culture techniques provide the opportunity to study pathophysiological changes in AD in human-derived samples that are difficult to recapitulate in animal models (e.g., transgenic mice). However, these models often lack immune cells such as microglia, which play a critical role in AD pathophysiology. In this study, we developed a neuroimmune assembloid model by integrating cerebral organoids (COs) with induced microglia-like cells (iMGs) derived from human induced pluripotent stem cells from familial AD patient with PSEN2 mutation. After 120 days in culture, we found that iMGs were successfully integrated within the COs. Interestingly, our assembloids displayed histological, functional and transcriptional features of the pro-inflammatory environment seen in AD, including amyloid plaque-like and neurofibrillary tangle-like structures, reduced microglial phagocytic capability, and enhanced neuroinflammatory and apoptotic gene expression. In conclusion, our neuroimmune assembloid model effectively replicates the inflammatory phenotype and amyloid pathology seen in AD. The online version contains supplementary material available at 10.1186/s12974-025-03544-x.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 05310 STEMdiffâ„¢ Hematopoietic Kit 100-0019 STEMdiffâ„¢ Microglia Differentiation Kit 100-0020 STEMdiffâ„¢ Microglia Maturation Kit 08570 STEMdiffâ„¢ Cerebral Organoid Kit Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05310 Product Name: STEMdiffâ„¢ Hematopoietic Kit Catalog #: 100-0019 Product Name: STEMdiffâ„¢ Microglia Differentiation Kit Catalog #: 100-0020 Product Name: STEMdiffâ„¢ Microglia Maturation Kit Catalog #: 08570 Product Name: STEMdiffâ„¢ Cerebral Organoid Kit Safety Data SheetCatalog #: Product Name: 100-1612 Anti-Mouse TCR Beta Antibody, Clone H57-597, PE Catalog #: 100-1612 Product Name: Anti-Mouse TCR Beta Antibody, Clone H57-597, PE ReferenceR. B. Kang et al. (Oct 2025) Nature Communications 16Human pancreatic α-cell heterogeneity and trajectory inference analyses reveal SMOC1 as a β-cell dedifferentiation gene
β-cell dysfunction and dedifferentiation towards an α-cell-like phenotype are hallmarks of type 2 diabetes. However, the cell subtypes involved in β-to-α-cell transition are unknown. Using single-cell and single-nucleus RNA-seq, RNA velocity, PAGA/cell trajectory inference, and gene commonality, we interrogated α-β-cell fate switching in human islets. We found five α-cell subclusters with distinct transcriptomes. PAGA analysis showed bifurcating cell trajectories in non-diabetic while unidirectional cell trajectories from β-to-α-cells in type 2 diabetes islets suggesting dedifferentiation towards α-cells. Ten genes comprised the common signature genes in trajectories towards α-cells. Among these, the α-cell gene SMOC1 was expressed in β-cells in type 2 diabetes. Enhanced SMOC1 expression in β-cells decreased insulin expression and secretion and increased β-cell dedifferentiation markers. Collectively, these studies reveal differences in α-β-cell trajectories in non-diabetes and type 2 diabetes human islets, identify signature genes for β-to-α-cell trajectories, and discover SMOC1 as an inducer of β-cell dysfunction and dedifferentiation. Subject terms: Cell signalling, Diabetes, DifferentiationCatalog #: Product Name: 34411 ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 Catalog #: 34411 Product Name: ´¡²µ²µ°ù±ð°Â±ð±ô±ôâ„¢400 ReferenceB. Vanderperre et al. (Oct 2025) Communications Biology 8Novel regulators of heparan sulfate proteoglycans modulate cellular uptake of α-synuclein fibrils
Synucleinopathies are characterized by the accumulation and propagation of α-synuclein (α-syn) aggregates throughout the brain, leading to neuronal dysfunction and death. In this study, we used an unbiased FACS-based genome-wide CRISPR/Cas9 knockout screening to identify genes that regulate the entry and accumulation of α-syn preformed fibrils (PFFs) in cells. We identified key genes and pathways specifically implicated in α-syn PFFs intracellular accumulation, including heparan sulfate proteoglycans (HSPG) biosynthesis and Golgi trafficking. All confirmed hits affected heparan sulfate (HS), a post-translational modification known to act as a receptor for proteinaceous aggregates including α-syn and tau. Intriguingly, deletion of SLC39A9 and C3orf58 genes, encoding respectively a Golgi-localized exporter of Zn 2+ , and the Golgi-localized putative kinase DIPK2A, specifically impaired the uptake of α-syn PFFs, by preventing the binding of PFFs to the cell surface. Mass spectrometry-based analysis of HS chains in SLC39A9 -/- and C3orf58 -/- cells indicated major defects in HS homeostasis. Additionally, Golgi accumulation of NDST1, a prime HSPG biosynthetic enzyme, was detected in C3orf58 -/- cells. Interestingly, C3orf58 -/- human iPSC-derived microglia and dopaminergic neurons exhibited a strong reduction in their ability to internalize α-syn PFFs. Altogether, our data identifies new modulators of HSPGs that regulate α-syn PFFs cell surface binding and uptake. Subject terms: Cellular neuroscience, GlycobiologyCatalog #: Product Name: 05310 STEMdiff™ Hematopoietic Kit Catalog #: 05310 Product Name: STEMdiff™ Hematopoietic Kit Safety Data SheetCatalog #: Product Name: 100-1611 Anti-Mouse TCR Beta Antibody, Clone H57-597, APC Catalog #: 100-1611 Product Name: Anti-Mouse TCR Beta Antibody, Clone H57-597, APC ReferenceKim et al. (Oct 2025) Scientific Reports 15Attenuation of natural killer cell cytotoxicity by interaction between NKp30 of NK cells and dipeptidase 1 of colon cancer cells
Natural killer (NK) cells play a crucial role in immune surveillance by recognizing and eliminating tumor cells. However, tumors employ various mechanisms to evade NK cell-mediated immunity. NKp30 is a potent activating receptor on NK cells, but its function can be inhibited by specific ligands secreted by cancer cells. Here, we identified dipeptidase 1 (DPEP1) as a novel ligand for NKp30 in KM12C colon cancer cells, using co-immunoprecipitation, confocal microscopy, and flow cytometry. We examined how the DPEP1–NKp30 interaction affects NK cell activity and found that NK cytotoxicity increased in KM12C cells with DPEP1 knockdown but was significantly reduced in HCT116 cells overexpressing DPEP1. We further demonstrated that DPEP1 is secreted via extracellular vesicles and that its interaction with NKp30 suppressed the expression and secretion of perforin 1, granzyme B, CD107a, and interferon-γ in NK92 cells. In a xenograft mouse model treated with NK92 cells, tumors derived from HCT116/DPEP1 cells were significantly larger than those from HCT116/mock cells. Using peripheral blood-derived human NK cells, we confirmed that DPEP1 inhibited both cytotoxicity and granzyme B secretion. These findings suggest that disrupting the DPEP1–NKp30 interaction may enhance NK cell-mediated cytotoxicity and represent a novel therapeutic strategy for cancer immunotherapy. The online version contains supplementary material available at 10.1038/s41598-025-18475-z.Catalog #: Product Name: 100-0711 ImmunoCult™ NK Cell Expansion Kit Catalog #: 100-0711 Product Name: ImmunoCult™ NK Cell Expansion Kit ReferenceM. Amouzgar et al. (Oct 2025) Nature Communications 16A deep single cell mass cytometry approach to capture canonical and noncanonical cell cycle states
The cell cycle (CC) underpins diverse cell processes like cell differentiation, cell expansion, and tumorigenesis but current single-cell (sc) strategies study CC as: coarse phases, rely on transcriptomic signatures, use imaging modalities limited to adherent cells, or lack high-throughput multiplexing. To solve this, we develop an expanded, Mass Cytometry (MC) approach with 48 CC-related molecules that deeply phenotypes the diversity of scCC states. Using Cytometry by Time of Flight, we quantify scCC states across suspension and adherent cell lines, and stimulated primary human T cells. Our approach captures the diversity of scCC states, including atypical CC states beyond canonical definitions. Pharmacologically-induced CC arrest reveals that perturbations exacerbate noncanonical states and induce previously unobserved states. Notably, primary cells escaping CC inhibition demonstrated aberrant CC states compared to untreated cells. Our approach enables deeper phenotyping of CC biology that generalizes to diverse cell systems with simultaneous multiplexing and integration with MC platforms. Subject terms: Assay systems, Proteomics, Cell biology, Immunology, Systems biologyCatalog #: Product Name: 15021 RosetteSepâ„¢ Human T Cell Enrichment Cocktail 10981 ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó T Cell Expansion Medium 100-0956 ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó Catalog #: 15021 Product Name: RosetteSepâ„¢ Human T Cell Enrichment Cocktail Catalog #: 10981 Product Name: ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó T Cell Expansion Medium Catalog #: 100-0956 Product Name: ±õ³¾³¾³Ü²Ô´Ç°ä³Ü±ô³Ùâ„¢-³Ý¹ó Items 349 to 360 of 14010 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2905 items
- Reference 7990 items
- Safety Data Sheet 3053 items
- Technical Manual 62 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 4 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 742 items
- Infectious Diseases 4 items
- Neuroscience 492 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 753 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 252 items
- STEMdiff 55 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 26 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 382 items
- Neurons 136 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 40 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.