Product Information
Items 2233 to 2244 of 13914 total
- Reference(Oct 2024) Molecular Metabolism 90 3
Thyroid hormone receptor beta (THR?1) is the major regulator of T3 action in human iPSC-derived hepatocytes
ObjectiveThyroid hormone (TH) action is mediated by thyroid hormone receptor (THR) isoforms. While THR?1 is likely the main isoform expressed in liver, its role in human hepatocytes is not fully understood.MethodsTo elucidate the role of THR?1 action in human hepatocytes we used CRISPR/Cas9 editing to knock out THR?1 in induced pluripotent stem cells (iPSC). Following directed differentiation to the hepatic lineage, iPSC-derived hepatocytes were then interrogated to determine the role of THR?1 in ligand-independent and -dependent functions.ResultsWe found that the loss of THR?1 promoted alterations in proliferation rate and metabolic pathways regulated by T3, including gluconeogenesis, lipid oxidation, fatty acid synthesis, and fatty acid uptake. We observed that key genes involved in liver metabolism are regulated through both T3 ligand-dependent and -independent THR?1 signaling mechanisms. Finally, we demonstrate that following THR?1 knockout, several key metabolic genes remain T3 responsive suggesting they are THR? targets.ConclusionsThese results highlight that iPSC-derived hepatocytes are an effective platform to study mechanisms regulating TH signaling in human hepatocytes. Graphical abstractImage 1 Highlights•THR?1 is essential for T3 effects in human iPSC-derived hepatocytes (iHEPs).•THR?1 knockout reduces iPSC and progenitor cell proliferative capacity.•T3 regulates key genes involved in lipid and carbohydrate metabolism through THR?1.•THR?1 plays a strong ligand-independent role.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 05110 STEMdiffâ„¢ Definitive Endoderm Kit Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05110 Product Name: STEMdiffâ„¢ Definitive Endoderm Kit Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0753Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Leukopak, Psoriasis, Fresh, FullCatalog #:200-0762Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Leukopak, PsoriasisCatalog #: 200-0753 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Leukopak, Psoriasis, Fresh, Full Catalog #: 200-0762 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Leukopak, Psoriasis Reference(Oct 2024) Acta Neuropathologica Communications 12 6Acquisition of neurodegenerative features in isogenic OPTN(E50K) human stem cell-derived retinal ganglion cells associated with autophagy disruption and mTORC1 signaling reduction
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) has led to numerous advances in the field of retinal research, with great potential for the use of hPSC-derived RGCs for studies of human retinal development, in vitro disease modeling, drug discovery, as well as their potential use for cell replacement therapeutics. Of all these possibilities, the use of hPSC-derived RGCs as a human-relevant platform for in vitro disease modeling has received the greatest attention, due to the translational relevance as well as the immediacy with which results may be obtained compared to more complex applications like cell replacement. While several studies to date have focused upon the use of hPSC-derived RGCs with genetic variants associated with glaucoma or other optic neuropathies, many of these have largely described cellular phenotypes with only limited advancement into exploring dysfunctional cellular pathways as a consequence of the disease-associated gene variants. Thus, to further advance this field of research, in the current study we leveraged an isogenic hPSC model with a glaucoma-associated mutation in the Optineurin (OPTN) protein, which plays a prominent role in autophagy. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor AMPK, along with subsequent neurodegeneration in OPTN(E50K) RGCs differentiated from hPSCs, and have further validated some of these findings in a mouse model of ocular hypertension. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN(E50K) RGCs. Taken together, these results highlighted that autophagy disruption resulted in increased autophagic demand which was associated with downregulated signaling through mTORC1, contributing to the degeneration of RGCs.Supplementary InformationThe online version contains supplementary material available at 10.1186/s40478-024-01872-2.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0755Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Leukopak, Rheumatoid Arthritis, Fresh, FullCatalog #:200-0764Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Leukopak, Rheumatoid ArthritisCatalog #: 200-0755 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Leukopak, Rheumatoid Arthritis, Fresh, Full Catalog #: 200-0764 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Leukopak, Rheumatoid Arthritis Reference(Apr 2024) medRxiv 400 2Deep learning modeling of rare noncoding genetic variants in human motor neurons defines
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.Catalog #: Product Name: 100-0276 mTeSRâ„¢ Plus Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0751Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Leukopak, Diabetes, Type I, Fresh, FullCatalog #:200-0760Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Leukopak, Diabetes, Type ICatalog #: 200-0751 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Leukopak, Diabetes, Type I, Fresh, Full Catalog #: 200-0760 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Leukopak, Diabetes, Type I Reference(Nov 2024) Viruses 16 11Differential Replication and Oncolytic Effects of Zika Virus in Aggressive CNS Tumor Cells: Insights from Organoid and Tumoroid Models
Central nervous system (CNS) cancers are responsible for high rates of morbidity and mortality worldwide. Malignant CNS tumors such as adult Glioblastoma (GBM) and pediatric embryonal CNS tumors such as medulloblastoma (MED) and atypical teratoid rhabdoid tumors (ATRT) present relevant therapeutic challenges due to the lack of response to classic treatment regimens with radio and chemotherapy. Recent findings on the Zika virus’ (ZIKV) ability to infect and kill CNS neoplastic cells draw attention to the virus’ oncolytic potential. Studies demonstrating the safety of using ZIKV for treating malignant CNS tumors, enabling the translation of this approach to clinical trials, are scarce in the literature. Here we developed a co-culture model of mature human cerebral organoids assembled with GBM, MED or ATRT tumor cells and used these assembloids to test ZIKV oncolytic effect, replication potential and preferential targeting between normal and cancer cells. Our hybrid co-culture models allowed the tracking of tumor cell growth and invasion in cerebral organoids. ZIKV replication and ensuing accumulation in the culture medium was higher in organoids co-cultured with tumor cells than in isolated control organoids without tumor cells. ZIKV infection led to a significant reduction in tumor cell proportion in organoids with GBM and MED cells, but not with ATRT. Tumoroids (3D cultures of tumor cells alone) were efficiently infected by ZIKV. Interestingly, ZIKV rapidly replicated in GBM, MED, and ATRT tumoroids reaching significantly higher viral RNA accumulation levels than co-cultures. Moreover, ZIKV infection reduced viable cells number in MED and ATRT tumoroids but not in GBM tumoroids. Altogether, our findings indicate that ZIKV has greater replication rates in aggressive CNS tumor cells than in normal human cells comprising cerebral organoids. However, such higher ZIKV replication in tumor cells does not necessarily parallels oncolytic effects, suggesting cellular intrinsic and extrinsic factors mediating tumor cell death by ZIKV.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0752Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Leukopak, Diabetes, Type II, Fresh, FullCatalog #:200-0761Lot #:AllLanguage:EnglishProduct Name:Diseased Human Peripheral Blood Leukopak, Diabetes, Type IICatalog #: 200-0752 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Leukopak, Diabetes, Type II, Fresh, Full Catalog #: 200-0761 Lot #: All Language: English Product Name: Diseased Human Peripheral Blood Leukopak, Diabetes, Type II Reference(Dec 2024) Cell & Bioscience 14 4832Impact of c-JUN deficiency on thalamus development in mice and human neural models
Backgroundc-Jun is a key regulator of gene expression. Through the formation of homo- or heterodimers, c-JUN binds to DNA and regulates gene transcription. While c-Jun plays a crucial role in embryonic development, its impact on nervous system development in higher mammals, especially for some deep structures, for example, thalamus in diencephalon, remains unclear.MethodsTo investigate the influence of c-JUN on early nervous system development, c-Jun knockout (KO) mice and c-JUN KO H1 embryonic stem cells (ESCs)-derived neural progenitor cells (NPCs), cerebral organoids (COs), and thalamus organoids (ThOs) models were used. We detected the dysplasia via histological examination and immunofluorescence staining, omics analysis, and loss/gain of function analysis.ResultsAt embryonic day 14.5, c-Jun knockout (KO) mice exhibited sparseness of fibers in the brain ventricular parenchyma and malformation of the thalamus in the diencephalon. The absence of c-JUN accelerated the induction of NPCs but impaired the extension of fibers in human neuronal cultures. COs lacking c-JUN displayed a robust PAX6+/NESTIN+ exterior layer but lacked a fibers-connected core. Moreover, the subcortex-like areas exhibited defective thalamus characteristics with transcription factor 7 like 2-positive cells. Notably, in guided ThOs, c-JUN KO led to inadequate thalamus patterning with sparse internal nerve fibers. Chromatin accessibility analysis confirmed a less accessible chromatin state in genes related to the thalamus. Overexpression of c-JUN rescued these defects. RNA-seq identified 18 significantly down-regulated genes including RSPO2, WNT8B, MXRA5, HSPG2 and PLAGL1 while 24 genes including MSX1, CYP1B1, LMX1B, NQO1 and COL2A1 were significantly up-regulated.ConclusionOur findings from in vivo and in vitro experiments indicate that c-JUN depletion impedes the extension of nerve fibers and renders the thalamus susceptible to dysplasia during early mouse embryonic development and human ThO patterning. Our work provides evidence for the first time that c-JUN is a key transcription regulator that play important roles in the thalamus/diencephalon development.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13578-024-01303-8.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Product Information SheetReference(Apr 2025) Journal of Neuroinflammation 22 1788–1805A 3D human iPSC-derived multi-cell type neurosphere system to model cellular responses to chronic amyloidosis
BackgroundAlzheimer’s disease (AD) is characterized by progressive amyloid beta (A?) deposition in the brain, with eventual widespread neurodegeneration. While the cell-specific molecular signature of end-stage AD is reasonably well characterized through autopsy material, less is known about the molecular pathways in the human brain involved in the earliest exposure to A?. Human model systems that not only replicate the pathological features of AD but also the transcriptional landscape in neurons, astrocytes and microglia are crucial for understanding disease mechanisms and for identifying novel therapeutic targets.MethodsIn this study, we used a human 3D iPSC-derived neurosphere model to explore how resident neurons, microglia and astrocytes and their interplay are modified by chronic amyloidosis induced over 3–5 weeks by supplementing media with synthetic A?1 -?42 oligomers. Neurospheres under chronic A? exposure were grown with or without microglia to investigate the functional roles of microglia. Neuronal activity and oxidative stress were monitored using genetically encoded indicators, including GCaMP6f and roGFP1, respectively. Single nuclei RNA sequencing (snRNA-seq) was performed to profile A? and microglia driven transcriptional changes in neurons and astrocytes, providing a comprehensive analysis of cellular responses.ResultsMicroglia efficiently phagocytosed A? inside neurospheres and significantly reduced neurotoxicity, mitigating amyloidosis-induced oxidative stress and neurodegeneration following different exposure times to A?. The neuroprotective effects conferred by the presence of microglia was associated with unique gene expression profiles in astrocytes and neurons, including several known AD-associated genes such as APOE. These findings reveal how microglia can directly alter the molecular landscape of AD.ConclusionsOur human 3D neurosphere culture system with chronic A? exposure reveals how microglia may be essential for the cellular and transcriptional responses in AD pathogenesis. Microglia are not only neuroprotective in neurospheres but also act as key drivers of A?-dependent APOE expression suggesting critical roles for microglia in regulating APOE in the AD brain. This novel, well characterized, functional in vitro platform offers unique opportunities to study the roles and responses of microglia to A? modelling key aspects of human AD. This tool will help identify new therapeutic targets, accelerating the transition from discovery to clinical applications.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12974-025-03433-3. Highlights Well-characterized functional human iPSC-derived 3D neurospheres (hiNS) consisting of neurons and astrocytes can be supplemented with microglia/macrophages (hiMG).Chronic amyloidosis in the presence of hiMG recapitulate key features and gene expression profiles of AD.hiMG within the model phagocytose A? and mitigate A?-induced neurotoxicity, reducing oxidative stress and neuronal damagehiMG are essential for A? to upregulate AD-like gene expression signatures in astrocytes.Immunohistochemical analysis reveals hiMG-dependent colocalization of A? and APOE. Supplementary InformationThe online version contains supplementary material available at 10.1186/s12974-025-03433-3.Catalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus Reference(Jul 2025) Scientific Reports 15Transcriptomic and electrophysiological alterations underlying phenotypic variability in SCN1A-associated febrile seizures
Febrile seizures (FS) are a common childhood neurological condition triggered by fever in children without prior neurological disorders. While generally benign, some individuals, particularly those with complex FS or genetic predispositions, may develop epilepsy or other neurological comorbidities. The mechanisms underlying this transition remain unclear. Mutations in SCN1A, encoding the NaV1.1 sodium channel ?-subunit, have been linked to several epilepsy syndromes associated with FS. This study examines phenotypic variability in individuals carrying the same SCN1A c.434T?>?C mutation, using induced pluripotent stem cell (iPSC)-derived neurons from two siblings with FS. Despite sharing the mutation, only the older sibling developed temporal lobe epilepsy (TLE). Transcriptomic analysis revealed downregulation of GABAergic pathway genes in both siblings’ neurons, aligning with SCN1A-associated epilepsy. However, neurons from the sibling with TLE exhibited additional abnormalities, including altered AMPA receptor subunit composition, changes in GABAA receptor subunits and chloride cotransporters expression, and reduced brain-derived neurotrophic factor (BDNF) levels, indicative of developmental immaturity. Voltage-clamp recordings confirmed impaired GABAergic and AMPA receptor-mediated synaptic activity. These findings suggest that combined GABAergic dysfunction, aberrant AMPA receptor composition, and reduced BDNF signaling contribute to the more severe phenotype and increased epilepsy susceptibility.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-09208-3.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Items 2233 to 2244 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.