Product Information
Items 1249 to 1260 of 13914 total
- Safety Data Sheet
Catalog #: Product Name: 100-1347 Anti-Human CD69 (AIM) Antibody, Clone FN50, PE-Cy7 Catalog #: 100-1347 Product Name: Anti-Human CD69 (AIM) Antibody, Clone FN50, PE-Cy7 - Reference(May 2024) Nature Communications 15
Long-read sequencing for 29 immune cell subsets reveals disease-linked isoforms
Alternative splicing events are a major causal mechanism for complex traits, but they have been understudied due to the limitation of short-read sequencing. Here, we generate a full-length isoform annotation of human immune cells from an individual by long-read sequencing for 29 cell subsets. This contains a number of unannotated transcripts and isoforms such as a read-through transcript of TOMM40-APOE in the Alzheimer’s disease locus. We profile characteristics of isoforms and show that repetitive elements significantly explain the diversity of unannotated isoforms, providing insight into the human genome evolution. In addition, some of the isoforms are expressed in a cell-type specific manner, whose alternative 3’-UTRs usage contributes to their specificity. Further, we identify disease-associated isoforms by isoform switch analysis and by integration of several quantitative trait loci analyses with genome-wide association study data. Our findings will promote the elucidation of the mechanism of complex diseases via alternative splicing. This paper unveils the complexity of human immune cell splicing, highlighting cell-specific isoforms and establishing connections between alternative splicing and complex traits. These findings have implications for understanding diseases and the evolution of the genome.Catalog #: Product Name: 19666 EasySep™ Direct Human Neutrophil Isolation Kit Catalog #: 19666 Product Name: EasySep™ Direct Human Neutrophil Isolation Kit Safety Data SheetCatalog #: Product Name: 100-1346 Anti-Human SATB2 (GLSS) Antibody, Polyclonal Catalog #: 100-1346 Product Name: Anti-Human SATB2 (GLSS) Antibody, Polyclonal Reference(May 2024) Cell Communication and Signaling : CCS 22 1Megakaryocytic IGF1 coordinates activation and ferroptosis to safeguard hematopoietic stem cell regeneration after radiation injury
BackgroundHematopoietic stem cell (HSC) regeneration underlies hematopoietic recovery from myelosuppression, which is a life-threatening side effect of cytotoxicity. HSC niche is profoundly disrupted after myelosuppressive injury, while if and how the niche is reshaped and regulates HSC regeneration are poorly understood.MethodsA mouse model of radiation injury-induced myelosuppression was built by exposing mice to a sublethal dose of ionizing radiation. The dynamic changes in the number, distribution and functionality of HSCs and megakaryocytes were determined by flow cytometry, immunofluorescence, colony assay and bone marrow transplantation, in combination with transcriptomic analysis. The communication between HSCs and megakaryocytes was determined using a coculture system and adoptive transfer. The signaling mechanism was investigated both in vivo and in vitro, and was consolidated using megakaryocyte-specific knockout mice and transgenic mice.ResultsMegakaryocytes become a predominant component of HSC niche and localize closer to HSCs after radiation injury. Meanwhile, transient insulin-like growth factor 1 (IGF1) hypersecretion is predominantly provoked in megakaryocytes after radiation injury, whereas HSCs regenerate paralleling megakaryocytic IGF1 hypersecretion. Mechanistically, HSCs are particularly susceptible to megakaryocytic IGF1 hypersecretion, and mTOR downstream of IGF1 signaling not only promotes activation including proliferation and mitochondrial oxidative metabolism of HSCs, but also inhibits ferritinophagy to restrict HSC ferroptosis. Consequently, the delicate coordination between proliferation, mitochondrial oxidative metabolism and ferroptosis ensures functional HSC expansion after radiation injury. Importantly, punctual IGF1 administration simultaneously promotes HSC regeneration and hematopoietic recovery after radiation injury, representing a superior therapeutic approach for myelosuppression.ConclusionsOur study identifies megakaryocytes as a last line of defense against myelosuppressive injury and megakaryocytic IGF1 as a novel niche signal safeguarding HSC regeneration.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12964-024-01651-5.Catalog #: Product Name: 17655 EasySep™ Release Mouse Biotin Positive Selection Kit 17656 EasySep™ Release Mouse PE Positive Selection Kit Catalog #: 17655 Product Name: EasySep™ Release Mouse Biotin Positive Selection Kit Catalog #: 17656 Product Name: EasySep™ Release Mouse PE Positive Selection Kit Safety Data SheetCatalog #: Product Name: 100-1345 Anti-Human Synaptophysin (MRX96) Antibody, Clone 249 Catalog #: 100-1345 Product Name: Anti-Human Synaptophysin (MRX96) Antibody, Clone 249 Reference(May 2024) Frontiers in Cellular Neuroscience 18Brain organoids engineered to give rise to glia and neural networks after 90 days in culture exhibit human-specific proteoforms
Human brain organoids are emerging as translationally relevant models for the study of human brain health and disease. However, it remains to be shown whether human-specific protein processing is conserved in human brain organoids. Herein, we demonstrate that cell fate and composition of unguided brain organoids are dictated by culture conditions during embryoid body formation, and that culture conditions at this stage can be optimized to result in the presence of glia-associated proteins and neural network activity as early as three-months in vitro. Under these optimized conditions, unguided brain organoids generated from induced pluripotent stem cells (iPSCs) derived from male–female siblings are similar in growth rate, size, and total protein content, and exhibit minimal batch-to-batch variability in cell composition and metabolism. A comparison of neuronal, microglial, and macroglial (astrocyte and oligodendrocyte) markers reveals that profiles in these brain organoids are more similar to autopsied human cortical and cerebellar profiles than to those in mouse cortical samples, providing the first demonstration that human-specific protein processing is largely conserved in unguided brain organoids. Thus, our organoid protocol provides four major cell types that appear to process proteins in a manner very similar to the human brain, and they do so in half the time required by other protocols. This unique copy of the human brain and basic characteristics lay the foundation for future studies aiming to investigate human brain-specific protein patterning (e.g., isoforms, splice variants) as well as modulate glial and neuronal processes in an in situ-like environment.Catalog #: Product Name: 100-0105 EasySep™ Release Human CD45 Positive Selection Kit 05790 BrainPhys™ Neuronal Medium 08570 STEMdiff™ Cerebral Organoid Kit Catalog #: 100-0105 Product Name: EasySep™ Release Human CD45 Positive Selection Kit Catalog #: 05790 Product Name: BrainPhys™ Neuronal Medium Catalog #: 08570 Product Name: STEMdiff™ Cerebral Organoid Kit Safety Data SheetCatalog #: Product Name: 100-1344 Anti-Human S100B (NEF) Antibody, Polyclonal Catalog #: 100-1344 Product Name: Anti-Human S100B (NEF) Antibody, Polyclonal Reference(May 2024) Cancer Research Communications 4 5Novel Spirocyclic Dimer, SpiD3, Targets Chronic Lymphocytic Leukemia Survival Pathways with Potent Preclinical Effects
AbstractChronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NFκB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its antileukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NFκB signaling and the UPR, culminating in profound antitumor properties independent of TME stimuli.Significance:SpiD3 demonstrates cytotoxicity in CLL partially through inhibition of NFκB signaling independent of tumor-supportive stimuli. By inducing the accumulation of unfolded proteins, SpiD3 activates the UPR and hinders protein synthesis in CLL cells. Overall, SpiD3 exploits critical CLL vulnerabilities (i.e., the NFκB pathway and UPR) highlighting its use in drug-resistant CLL.Catalog #: Product Name: 19844 EasySep™ Mouse Pan-B Cell Isolation Kit Catalog #: 19844 Product Name: EasySep™ Mouse Pan-B Cell Isolation Kit Safety Data SheetCatalog #: Product Name: 100-1342 Anti-Human MAP2 (MAP-2) Antibody, Polyclonal Catalog #: 100-1342 Product Name: Anti-Human MAP2 (MAP-2) Antibody, Polyclonal Reference(May 2024) Frontiers in Immunology 15Single-cell transcriptomic analysis of hematopoietic progenitor cells from patients with systemic lupus erythematosus reveals interferon-inducible reprogramming in early progenitors
IntroductionImmune cells that contribute to the pathogenesis of systemic lupus erythematosus (SLE) derive from adult hematopoietic stem and progenitor cells (HSPCs) within the bone marrow (BM). For this reason, we reasoned that fundamental abnormalities in SLE can be traced to a BM-derived HSPC inflammatory signature.MethodsBM samples from four SLE patients, six healthy controls, and two umbilical cord blood (CB) samples were used. CD34+ cells were isolated from BM and CB samples, and single-cell RNA-sequencing was performed.ResultsA total of 426 cells and 24,473 genes were used in the analysis. Clustering analysis resulted in seven distinct clusters of cell types. Mutually exclusive markers, which were characteristic of each cell type, were identified. We identified three HSPC subpopulations, one of which consisted of proliferating cells (MKI67 expressing cells), one T-like, one B-like, and two myeloid-like progenitor subpopulations. Differential expression analysis revealed i) cell cycle-associated signatures, in healthy BM of HSPC clusters 3 and 4 when compared with CB, and ii) interferon (IFN) signatures in SLE BM of HSPC clusters 3 and 4 and myeloid-like progenitor cluster 5 when compared with healthy controls. The IFN signature in SLE appeared to be deregulated following TF regulatory network analysis and differential alternative splicing analysis between SLE and healthy controls in HSPC subpopulations.DiscussionThis study revealed both quantitative—as evidenced by decreased numbers of non-proliferating early progenitors—and qualitative differences—characterized by an IFN signature in SLE, which is known to drive loss of function and depletion of HSPCs. Chronic IFN exposure affects early hematopoietic progenitors in SLE, which may account for the immune aberrancies and the cytopenias in SLE.Catalog #: Product Name: 17856 EasySep™ Human CD34 Positive Selection Kit II Catalog #: 17856 Product Name: EasySep™ Human CD34 Positive Selection Kit II Safety Data SheetCatalog #: Product Name: 100-1341 Anti-Human TBR1 (IDDAS) Antibody, Polyclonal Catalog #: 100-1341 Product Name: Anti-Human TBR1 (IDDAS) Antibody, Polyclonal Reference(May 2024) Nature Communications 15Priming with LSD1 inhibitors promotes the persistence and antitumor effect of adoptively transferred T cells
The antitumor efficacy of adoptively transferred T cells is limited by their poor persistence, in part due to exhaustion, but the underlying mechanisms and potential interventions remain underexplored. Here, we show that targeting histone demethylase LSD1 by chemical inhibitors reshapes the epigenome of in vitro activated and expanded CD8+ T cells, and potentiates their antitumor efficacy. Upon T cell receptor activation and IL-2 signaling, a timely and transient inhibition of LSD1 suffices to improve the memory phenotype of mouse CD8+ T cells, associated with a better ability to produce multiple cytokines, resist exhaustion, and persist in both antigen-dependent and -independent manners after adoptive transfer. Consequently, OT1 cells primed with LSD1 inhibitors demonstrate an enhanced antitumor effect in OVA-expressing solid tumor models implanted in female mice, both as a standalone treatment and in combination with PD-1 blockade. Moreover, priming with LSD1 inhibitors promotes polyfunctionality of human CD8+ T cells, and increases the persistence and antitumor efficacy of human CD19-CAR T cells in both leukemia and solid tumor models. Thus, pharmacological inhibition of LSD1 could be exploited to improve adoptive T cell therapy. Phenotypic changes in exhausted T cells are linked to chromatin remodeling. Here the authors show that pharmacological inhibition of the H3K4me1/2 demethylase LSD1 promotes the persistence and enhances the therapeutic activity of adoptively transferred T cells for cancer therapy.Catalog #: Product Name: 19853 EasySepâ„¢ Mouse CD8+ T Cell Isolation Kit Catalog #: 19853 Product Name: EasySepâ„¢ Mouse CD8+ T Cell Isolation Kit Items 1249 to 1260 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.