Thank you for your interest in this product.
Please provide us with your contact information and your local representative
will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to ƽ Technologies Canada Inc. and its subsidiaries and affiliates (“ƽ”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Robustly generate three-dimensional, patterned brain organoid cultures from human pluripotent stem cells without matrix embedding. STEMdiff™ Dorsal and Ventral Forebrain Organoid Differentiation Kits are serum-free cell culture media that work with AggreWell™-generated embryoid bodies to prevent organoid fusion and enable the scalable generation of over 500 highly reproducible organoids per kit. Adapted from protocols by Sergiu Paşca (F Birey et al. Nature, 2017), these brain-region-specific organoids are three-dimensional in vitro models with a cellular composition and structural organization that is representative of the developing human forebrain. STEMdiff™ Dorsal Forebrain Organoid Differentiation Kit (Catalog #08620) generates tissue of the early developing dorsal pallium, while STEMdiff™ Ventral Forebrain Organoid Differentiation Kit (Catalog #08630) generates tissue of the early developing ventral subpallium. Organoids generated with these kits can also be co-cultured as assembloids to study brain region interactions (F Birey et al. Nature, 2017). For extended periods of organoid culture (> 50 days), the components required for organoid maintenance are available as STEMdiff™ Neural Organoid Maintenance Kit (Catalog #100-0120).
Figure 1. Schematic for the STEMdiff™ Dorsal Forebrain Organoid Differentiation Kit
Human ES or iPS cell-derived dorsal forebrain organoids can be generated in 43 days. Embryoid bodies can be created in 6 days with ±™800 plates. The EBs are then cultured in suspension, allowing growth and subsequent patterning to the dorsal forebrain. For the long-term maintenance and further maturation of dorsal forebrain organoids, see the PIS.
Figure 2. STEMdiff™ Dorsal Forebrain Organoid Differentiation Kit Supports the Generation of Homogeneous, Reproducible Neural Organoids
(A) Neural aggregates formed in ±™800 microwell plates exhibit uniform size and shape at day 6. H9-derived dorsal forebrain organoids from a single batch have spherical morphology at days (B) 15 (C) 25 (D) 50 (E) 75 and (F) 100. Scale bar = 1 mm. (G) Dorsal forebrain organoids exhibit homogeneous size over multiple cell lines (average ± SD, using 11 cell lines with 3 - 5 organoids counted per cell line and time point). (H-N) Day 25 organoids generated by a novice user with STEMdiff™ Dorsal Forebrain Organoid Differentiation Kit show reproducibility across different cell lines.
Whole-well images of dorsal forebrain organoid cultures derived from the H9 cell line in STEMdiff™ Forebrain Organoid Expansion Medium (bottom row) vs. the control published formulation (top row) show the extent of fusion typical in control media without orbital shaking. At Day 10 post-seeding in the control formulation, 12/12 organoids that were seeded are developing, but by Day 20 a single, larger organoid can be seen in the well. In STEMdiff™ Forebrain Organoid Expansion Medium, 20/20 seeded organoids are developing and 20/20 are still developing at Day 20 without shaking. While organoids in both culture conditions grow larger between 10 and 20 days, the reduction in organoids and enlarged size in the control formulation suggest a reduction in organoid yield due to organoid fusion.
Figure 4. STEMdiff™ Dorsal Forebrain Organoids Exhibit Cortical Layering and Brain-Region-Specific Marker Expression as They Mature
(A) Day 25 dorsal forebrain organoids display multiple cortical-like regions marked by radialized PAX6+ cells surrounded by MAP2 neurons. (B) Day 50 dorsal forebrain organoids continue to display multiple cortical-like regions marked by PAX6 (green) and MAP2 (magenta). (C) Dorsal forebrain organoids cultured for 100 - 200 days show increasing separation of deep-layer neurons (CTIP2, green; TBR1, cyan) from upper-layer neurons (SATB2, magenta).
Figure 5. Neural Organoids Generated with STEMdiff™ Dorsal and Ventral Forebrain Organoid Kits Express Key Markers of Brain-Region-Specific Patterning
RNA from single organoids was harvested at a series of time points and subsequently assayed using bulk RNA-seq (1 data column = 1 organoid). (A) Heat map of select genes shows that both dorsal forebrain organoids (DFO) and ventral forebrain organoids (VFO) express the forebrain-specific marker FOXG1 while showing a shift from neural progenitor fates to neuronal cell types. (B) DFO express increasing levels of cortex- and glutaminergic neuron-specific genes from day 25 to 75. (C) Day 25 VFO exhibit high expression of markers of the medial ganglionic eminence and of GABAergic neurons. Heat map scale quantifies gene expression across each row with a normalized z-score for each gene.
Figure 6. Dorsal Forebrain Organoids, Not Ventral Forebrain Organoids, Display Early Network Bursting Activity
Day 50 dorsal and ventral forebrain organoids were plated on a microelectrode array (MEA; CytoView MEA 96, Axion Biosystems) coated with 0.1% polyethyleneimine in borate buffer and 20 µg/mL CellAdhere™ Laminin-521. Activity from 8 electrodes per well was recorded once per week for 4 weeks using a Maestro MEA system (Axion Biosystems). (A) Representative bright field image of dorsal and ventral forebrain organoids on the MEA. Insets show representative spike rate heat maps for the corresponding well (red = 12 spikes/sec). Scale bar = 1 mm. (B) Raster plots of spike activity show increasing network bursting (pink lines) for dorsal forebrain organoids between week 1 and week 4, whereas no network bursting is observed in the ventral forebrain organoid (lower panels) over the same time period. (C) Mean firing rate (average ± SEM; 3 - 6 organoids per time point) increases for dorsal forebrain organoids but not ventral forebrain organoids over 4 weeks of measurements.
Figure 7. Fluorescent Imaging in BrainPhys™ Imaging Optimized Medium Improves Signal-to-Background Ratios of 3D Neural Cultures
GFP-labeled ventral forebrain organoids were co-cultured and merged with unlabeled dorsal forebrain organoids for one week prior to live imaging in Forebrain Organoid Differentiation Medium from STEMdiff™ Dorsal Forebrain Organoid Differentiation Kit (right) or BrainPhys™ Imaging Optimized Medium (BPI, left). Interneuron migration can be visualized more clearly in BPI. Scale bar top panels = 300μm; scale bar bottom = 100μm. Adapted from , Nature Communications, available under a . For experimental details on generating AssemBloids™ from dorsal and ventral forebrain organoid co-cultures, see the protocol in our Methods Library.
Figure 8. hPSC-Derived Microglia Incorporate into Brain Organoids After 10 Days and Display an Activated Morphology upon Injury
(A, C) Representative microglia and brain organoid co-cultures after 10 days, sectioned and stained with IBA1 for microglia (green) and MAP2 for neurons (magenta). The microglia integrate among the neurons and display an unactivated morphology with extended processes. (B, D) The microglia display an activated amoeboid morphology upon injury as shown by IBA1 staining.
Guided dorsal forebrain organoids were generated from H9 ESCs using STEMdiff™ Dorsal Forebrain Organoid Differentiation Kit. scRNA-seq gene expression data captures the cellular diversity of these neural organoids which can be further explored using the Single Cell RNA Sequencing Data Visualization Tool for Neural Organoids. At Day 50, the organoids were dissociated into a single-cell suspension. The library was prepared using Chromium Single Cell 3ʹ v1 protocol with Feature Barcoding technology (10x Genomics) following surface protein staining with TotalSeq™–B (BioLegend). The barcoded processing, gene counting and aggregation were done using the Cell Ranger software v3.1.0. Further processing and demultiplexing was done with Seurat v4.1.1. The data have been made publicly available on GEO: . ESC = embryonic stem cell
This product is designed for use in the following research area(s) as part
of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we
offer to support each research area.
The ADCY1-mediated cAMP signaling pathway mediates functional effects of montelukast treatment in brain organoids
Cellular and Molecular Life Sciences: CMLS 2025 Jun
Abstract
Montelukast (MTK) is a drug widely used for treating allergic rhinitis and asthma. However, severe neuropsychiatric adverse events related to MTK have been reported, with limited understanding of the underlying mechanisms. Here we leveraged human forebrain organoids (hFOs) and showed that MTK exposure in hFOs downregulated the expression of genes associated with multiple neuronal functions and neuropsychiatric disorders. The following integrative analysis highlighted adenylate cyclase 1 (ADCY1), a main regulator of the cAMP signaling pathway, as a hub gene mediating the functional effects of MTK exposure. We also showed that MTK exposure resulted in a reduction of cAMP and neuroactivities, and caused neural maturation defects. These cellular phenotypes could be recapitulated by treating hFOs with ST034307, a selective ADCY1 inhibitor, or partially rescued by ADCY1 overexpression in hFOs. Together, this study underscored that MTK exposure caused neuropsychiatric effects through inhibiting the ADCY1-mediated cAMP signaling pathway.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00018-025-05764-z.
Examining the NEUROG2 lineage and associated gene expression in human cortical organoids
Development (Cambridge, England) 2025 Jan
Abstract
ABSTRACTProneural genes are conserved drivers of neurogenesis across the animal kingdom. How their functions have adapted to guide human-specific neurodevelopmental features is poorly understood. Here, we mined transcriptomic data from human fetal cortices and generated from human embryonic stem cell-derived cortical organoids (COs) to show that NEUROG1 and NEUROG2 are most highly expressed in basal neural progenitor cells, with pseudotime trajectory analyses indicating that NEUROG1-derived lineages predominate early and NEUROG2 lineages later. Using ChIP-qPCR, gene silencing and overexpression studies in COs, we show that NEUROG2 is necessary and sufficient to directly transactivate known target genes (NEUROD1, EOMES, RND2). To identify new targets, we engineered NEUROG2-mCherry knock-in human embryonic stem cells for CO generation. The mCherry-high CO cell transcriptome is enriched in extracellular matrix-associated genes, and two genes associated with human-accelerated regions: PPP1R17 and FZD8. We show that NEUROG2 binds COL1A1, COL3A1 and PPP1R17 regulatory elements, and induces their ectopic expression in COs, although NEUROG2 is not required for this expression. Neurog2 similarly induces Col3a1 and Ppp1r17 in murine P19 cells. These data are consistent with a conservation of NEUROG2 function across mammalian species. Summary: Analysis of human cortical organoids reveals that NEUROG1 lineages prevail early and NEUROG2 lineages later, and that NEUROG2 targets include COL genes and PPP1R17, a human-accelerated region-associated gene.
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT ƽ, REFER TO WWW.ƽ.COM/COMPLIANCE.