ƽ

STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit

Serum-free media for differentiation of human PSCs to ventricular cardiomyocytes and long-term maintenance of human PSC-derived cardiomyocytes

Need a high-quality cell source? Choose from our hiPSC healthy control lines, manufactured with mTeSR™ Plus.

STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit

Serum-free media for differentiation of human PSCs to ventricular cardiomyocytes and long-term maintenance of human PSC-derived cardiomyocytes

Catalog #
(Select a product)
Serum-free media for differentiation of human PSCs to ventricular cardiomyocytes and long-term maintenance of human PSC-derived cardiomyocytes
Request Pricing Request Pricing

Product Advantages


  • Supports the entire hPSC-derived cardiomyocyte workflow

  • Simple monolayer protocol produces cardiomyocytes in 15 days

  • One serum-free kit generates over 50 million cardiomyocytes (cTnT+)

  • Robust performance with minimal variability across multiple hPSC lines

What's Included

  • STEMdiff™ Cardiomyocyte Differentiation Basal Medium, 380 mL
  • STEMdiff™ Ventricular Cardiomyocyte Differentiation Supplement A (10X), 10 mL
  • STEMdiff™ Ventricular Cardiomyocyte Differentiation Supplement B (10X), 10 mL
  • STEMdiff™ Ventricular Cardiomyocyte Differentiation Supplement C (10X), 20 mL
  • STEMdiff™ Cardiomyocyte Maintenance Basal Medium, 490 mL
  • STEMdiff™ Cardiomyocyte Maintenance Supplement (50X), 10 mL
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

Overview

STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit (Catalog #05010) includes a medium for differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells (human pluripotent stem cells [hPSCs]) into ventricular cardiomyocytes (cardiac troponin T-positive [cTnT+]), as well as a medium for maintenance of hPSC-derived cardiomyocytes. This serum-free kit can be used to generate ventricular cardiomyocytes derived from a clump culture of hPSCs maintained in mTeSR™1 (Catalog #85850), mTeSR™ Plus (Catalog #100-0276), TeSR™-AOF (Catalog #100-0401), or TeSR™-E8™ (Catalog #05990). Greater than 80% of these cells will be cTnT+. An average of 1 x 10^6 cells can be harvested from a single well of a 12-well plate.

STEMdiff™ Cardiomyocyte Maintenance Kit (Catalog #05020) comprises the maintenance basal medium and supplement; it can be used for long-term maintenance of hPSC-derived cardiomyocytes for one month or longer. These cardiomyocytes can be used in various downstream applications and analyses.

NOTE: This product was formerly named ‘STEMdiff™ Cardiomyocyte Differentiation Kit’; the product itself and manufacturing procedures have not changed, but the name has been updated to more accurately reflect the cell type generated.
Subtype
Specialized Media
Cell Type
Cardiomyocytes, PSC-Derived
Species
Human
Application
Cell Culture, Differentiation, Maintenance
Brand
STEMdiff
Area of Interest
Disease Modeling, Drug Discovery and Toxicity Testing, Stem Cell Biology
Formulation Category
Serum-Free

Data Figures

Figure 1. Cardiomyocyte Differentiation Protocol

Two days before the differentiation protocol, hPSC colonies are harvested and seeded as single cells at 350,000 cells/well in a 12-well format in TeSR™ medium. After one day (Day -1), the medium is replaced with fresh TeSR™ medium. The following day (Day 0), the TeSR™ medium is replaced with Medium A (STEMdiff™ Cardiomyocyte Differentiation Basal Medium containing Supplement A) to begin inducing the cells toward a cardiomyocyte fate. On day 2, a full medium change is performed with fresh Medium B (STEMdiff™ Cardiomyocyte Differentiation Basal Medium containing Supplement B). On days 4 and 6, full medium changes are performed with fresh Medium C (STEMdiff™ Cardiomyocyte Differentiation Basal Medium containing Supplement C). On day 8, medium is switched to STEMdiff™ Cardiomyocyte Maintenance Medium with full medium changes on days 10, 12 and 14, to promote further differentiation into cardiomyocyte cells. Small beating areas of cardiomyocytes can be seen as early as day 8, progressing to a full lawn of beating cardiomyocytes that can be harvested as early as day 15.

Figure 2. Morphology of hPSC-Derived Cardiomyocytes

Representative images of (A) hES (H9) cells and (B) hiPS (WLS-1C) cells on day 15 of differentiation to cardiomyocytes using the STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit. Differentiated cells exhibit typical cardiomyocyte morphology as an adherent, tightly packed web-like monolayer of beating cells. (C) Representative confocal microscopy image of a single hPSC-derived cardiomyocyte generated with the STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit and stained with cTnT (green) and DAPI (blue).

Figure 3. Efficient and Robust Generation of cTnT-Positive Cardiomyocytes

hES and hiPS cells were cultured for 15 days in single wells of 12-well plates using the STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit. At the end of the culture period, cells were harvested and analyzed by flow cytometry for expression of cardiac troponin T (cTnT). (A) Histogram analysis for cardiomyocyte cell marker cTnT for cultures of hES (H9) and hiPS (WLS-1C and STiPS-M001) cells. (Filled = sample; blank = secondary antibody only control) (B,C) Percentages and total numbers of cells expressing cTnT in cultures of hES or hiPS cells are shown. Data shown as mean ± SEM; n=3.

Figure 4. hPSC-Derived Cardiomyocytes Exhibit a Robust and Stable Excitability Profile

Microelectrode array (MEA) voltage recordings of cardiomyocytes (day 27) derived from human pluripotent stem cells generated and maintained with the STEMdiff™ Cardiomyocyte Differentiation and Maintenance Kits. The hPSC-derived cardiomyocytes have a characteristic electrical profile and stable beat rate. A large depolarization spike followed by a smaller repolarization deflection is observed.

Microelectrode array and flow cytometry of human ES and iPS cells maintained in mTeSR™1 (daily feeds) or mTeSR™ Plus (restricted feeds) and differentiated to cardiomyocytes using the STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit.

Figure 5. Generation of Cardiomyocytes from hPSCs Maintained in mTeSR™ Plus

Human ES (H9) and iPS (WLS-1C) cells were maintained in mTeSR™1 (daily feeds) or mTeSR™ Plus (restricted feeds) and differentiated to cardiomyocytes using the STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit. At the end of the differentiation period, cells were harvested and analyzed by microelectrode array (MEA) and flow cytometry. (A) Representative MEA voltage recordings of cardiomyocytes (day 20) demonstrate a characteristic electrical profile and stable beat rate. (B) Percentages of cells expressing cTNT and (C) total number of viable cells harvested are shown. Data are expressed as the mean (± SEM); n=2.

Microscopy images of iPSCdirect cells and differentiated ventral cardiomyocytes, and a video of coordinated contraction or beating behavior of cardiomyocytes in a culture dish

Figure 6. ʳ徱𳦳™ SCTi003-A Human Pluripotent Stem Cells Can Successfully Differentiate into Ventricular Cardiomyocytes

Ventricular cardiomyocytes were generated from ʳ徱𳦳™ SCTi003-A cells using STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit (Catalog #05010). (A) 48 hours after thawing and plating in mTeSR™ Plus and CloneR™2, ʳ徱𳦳™ cells reached the desired confluency and are ready for Day 0 of differentiation according to the STEMdiff™ Ventricular Cardiomyocyte Product Information Sheet. (B) By Day 15 of differentiation, monolayer cultures show iPSC-derived ventricular cardiomyocytes that (C) exhibit coordinated beating behavior.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
05010
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05010
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05010
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05010
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05010
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05010
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05010
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Publications (16)

Gremlin1 repression-mediated mitochondrial network hyperfunction contributes to TCE-induced zebrafish cardiac defects Cell Communication and Signaling : CCS 2025 Jul

Abstract

BackgroundTrichloroethylene (TCE) is a ubiquitous pollutant with potential capacity to induce congenital heart disease (CHD). However, the mechanisms underlying TCE-induced CHD are largely unraveled.MethodsWe exposed zebrafish embryos to TCE to investigate its cardiac development toxicity and related response factor through bulk RNA sequencing. We constructed transgenic fluorescent fish and employed the CRISPR/dCas9 system along with single-cell RNA sequencing to identify the genetic cause of TCE-induced CHD.ResultsWe found that early-stage exposure to TCE induced significant cardiac defects characterized by elongated SV-BA distance, thinned myocardium, and attenuated contractility. Gremlin1 encoding gene, grem1a, a putative target showing high expression at the beginning of cardiac development, was sharply down-regulated by TCE. Consistently, grem1a knockdown in zebrafish induced cardiac phenotypes generally like those of the TCE-treated group, accompanying the disarrangement of myofibril structure. Single-cell RNA-seq depicted that mitochondrial respiration in grem1a-repressed cardiomyocytes was greatly enhanced, ultimately leading to a branch from the normal trajectory of myocardial development. Accordingly, in vitro results demonstrated that GREM1 repression increased mitochondrial content, ATP production, mitochondrial reactive oxygen species, mitochondrial membrane potential, and disrupted myofibril expansion in hPSC-CMs.ConclusionsThese results suggested that TCE-induced gremlin1 repression could result in mitochondrial hyperfunction, thereby hampering cardiomyocyte development and causing cardiac defects in zebrafish embryos. This study not only provided a novel insight into the etiology for environmental stressor-caused cardiac development defects, but also offered a potential therapeutic and preventive target for TCE-induced CHD.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12964-025-02314-9.
Monkeypox virus protein H3L induces injuries in human and mouse Cell Death & Disease 2024 Aug

Abstract

Monkeypox virus (MPV) is known to inflict injuries and, in some cases, lead to fatalities in humans. However, the underlying mechanisms responsible for its pathogenicity remain poorly understood. We investigated functions of MPV core proteins, H3L, A35R, A29L, and I1L, and discovered that H3L induced transcriptional perturbations and injuries. We substantiated that H3L upregulated IL1A expression. IL1A, in consequence, caused cellular injuries, and this detrimental effect was mitigated when countered with IL1A blockage. We also observed that H3L significantly perturbed the transcriptions of genes in cardiac system. Mechanistically, H3L occupied the promoters of genes governing cellular injury, leading to alterations in the binding patterns of H3K27me3 and H3K4me3 histone marks, ultimately resulting in expression perturbations. In vivo and in vitro models confirmed that H3L induced transcriptional disturbances and cardiac dysfunction, which were ameliorated when IL1A was blocked or repressed. Our study provides valuable insights into comprehensive understanding of MPV pathogenicity, highlights the significant roles of H3L in inducing injuries, and potentially paves the way for the development of therapeutic strategies targeting IL1A.
Role of Blood Oxygen Saturation During Post-Natal Human Cardiomyocyte Cell Cycle Activities. L. Ye et al. JACC. Basic to translational science 2020 may

Abstract

Blood oxygen saturation (SaO2) is one of the most important environmental factors in clinical heart protection. This study used human heart samples and human induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) to assess how SaO2 affects human CM cell cycle activities. The results showed that there were significantly more cell cycle markers in the moderate hypoxia group (SaO2: 75{\%} to 85{\%}) than in the other 2 groups (SaO2 {\textless}75{\%} or {\textgreater}85{\%}). In iPSC-CMs 15{\%} and 10{\%} oxygen (O2) treatment increased cell cycle markers, whereas 5{\%} and rapid change of O2 decreased the markers. Moderate hypoxia is beneficial to the cell cycle activities of post-natal human CMs.
Need a high-quality cell source? Choose from our hiPSC healthy control lines, manufactured with mTeSR™ Plus.