海角破解版

RosetteSep? Human Monocyte Enrichment Cocktail

Immunodensity negative selection cocktail

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

RosetteSep? Human Monocyte Enrichment Cocktail

Immunodensity negative selection cocktail

Catalog #
(Select a product)
Immunodensity negative selection cocktail
Request Pricing Request Pricing

Product Advantages


  • Fast and easy-to-use

  • Requires no special equipment or training

  • Isolated cells are untouched

  • Can be combined with SepMate? for consistent, high-throughput sample processing

What's Included

  • RosetteSep? Human Monocyte Enrichment Cocktail (Catalog #15028)
    • RosetteSep? Human Monocyte Enrichment Cocktail, 2 mL
  • RosetteSep? Human Monocyte Enrichment Cocktail (Catalog #15068)
    • RosetteSep? Human Monocyte Enrichment Cocktail, 5 x 2 mL
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

Overview

The RosetteSep? Human Monocyte Enrichment Cocktail is designed to isolate monocytes from whole blood by negative selection. Unwanted cells are targeted for removal with Tetrameric Antibody Complexes (TAC) recognizing non-monocyte cells and red blood cells (RBCs). When centrifuged over a buoyant density medium such as Lymphoprep? (Catalog #18060), the unwanted cells pellet along with the RBCs. The purified monocytes are present as a highly enriched population at the interface between the plasma and the buoyant density medium.
Subtype
Cell Isolation Kits
Cell Type
Monocytes
Species
Human
Sample Source
Buffy Coat, Whole Blood
Selection Method
Negative
Application
Cell Isolation
Brand
RosetteSep
Area of Interest
Immunology

Data Figures

FACS Histogram Results Using RosetteSep™ Human Monocyte Enrichment Cocktail

Figure 1. FACS Histogram Results Using RosetteSep™ Human Monocyte Enrichment Cocktail

Starting with fresh peripheral blood, the CD14+ cell content of the enriched fraction is typically 72% - 85%. *Note: Red blood cells were removed by lysis prior to flow cytometry.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
15068, 15028
Lot #
All
Language
English
Document Type
Product Name
Catalog #
15068, 15028
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

What is RosetteSep™?

RosetteSep™ is a rapid cell separation procedure for the isolation of purified cells directly from whole blood, without columns or magnets.

How does RosetteSep™ work?

The antibody cocktail crosslinks unwanted cells to red blood cells (RBCs), forming rosettes. The unwanted cells then pellet with the free RBCs when centrifuged over a density centrifugation medium (e.g. Ficoll-Paque™ PLUS, Lymphoprep™).

What factors affect cell recovery?

The temperature of the reagents can affect cell recovery. All reagents should be at room temperature (sample, density centrifugation medium, PBS, centrifuge) before performing the isolations. Layering can also affect recovery so be sure to carefully layer the sample to avoid mixing with the density centrifugation medium as much as possible. Be sure to collect the entire enriched culture without disturbing the RBC pellet. A small amount of density centrifugation medium can be collected without worry.

Which cell samples can RosetteSep™ be used with?

RosetteSep™ can be used with leukapheresis samples, bone marrow or buffy coat, as long as: the concentration of cells does not exceed 5 x 107 per mL (can dilute if necessary); and there are at least 100 RBCs for every nucleated cell (RBCs can be added if necessary).

Can RosetteSep™ be used with previously frozen or cultured cells?

Yes. Cells should be re-suspended at 2 - 5 x 107 cells / mL in PBS + 2% FBS. Fresh whole blood should be added at 250 µL per mL of sample, as a source of red cells.

Can RosetteSep™ be used to enrich progenitors from cord blood?

Yes. Sometimes cord blood contains immature nucleated red cells that have a lower density than mature RBCs. These immature red cells do not pellet over Ficoll™, which can lead to a higher RBC contamination than peripheral blood separations.

Does RosetteSep™ work with mouse cells?

No, but we have developed EasySep™, a magnetic-based cell isolation system which works with mouse and other non-human species.

Which anticoagulant should be used with RosetteSep™?

Peripheral blood should be collected in heparinized Vacutainers. Cord blood should be collected in ACD.

Should the anticoagulant be washed off before using RosetteSep™?

No, the antibody cocktail can be added directly to the sample.

Publications (51)

Long‐term immune changes after COVID‐19 and the effect of BCG vaccination and latent infections on disease severity K. Bendí?ková et al. Clinical & Translational Immunology 2025 Jun

Abstract

Several years after the COVID‐19 pandemic, the impact of SARS‐CoV‐2 on immunity and the potential protective role of Bacillus Calmette–Guérin (BCG) vaccination through trained immunity remain a subject of investigation. This study aimed to determine the long‐term impact of SARS‐CoV‐2 on immune cells and the association between BCG vaccination, latent infections and COVID‐19 severity and sepsis progression. We conducted a prospective analysis of patients who recovered from mild/severe/critical COVID‐19 ( n =?97, 3–17?months after COVID‐19) and sepsis patients ( n =?64). First, we assessed the impact of COVID‐19 and its severity on immune cell frequencies and expression of functional markers. Further, we analysed plasma titres of anti‐ Toxoplasma gondii /cytomegalovirus/BCG antibodies and their association with COVID‐19 severity and sepsis outcome. To examine monocyte responses to secondary challenge, monocytes isolated from COVID‐19 convalescent patients, BCG vaccinated and unvaccinated volunteers were stimulated with SARS‐CoV‐2 and LPS. Post‐COVID‐19 patients showed immune dysregulation regardless of disease severity characterised by altered expression of activation and functional markers in myeloid (CD39, CD64, CD85d, CD11b) and lymphoid cells (CD39, CD57, TIGIT). Strikingly, post‐critical COVID‐19 patients showed elevated expression of CD57 in CD8 + T?cells compared to other severity groups. A trend toward improved outcomes in BCG‐seropositive COVID‐19/sepsis patients was observed, although this may be confounded by age differences between groups. In contrast, the monocyte response to stimulation appeared unaffected by COVID‐19 severity. These findings highlight the long‐term alterations of immune cells in post‐COVID‐19 patients, emphasising the substantial impact of COVID‐19 on immune function.
Aging modulates the immunosuppressive, polarizing and metabolic functions of blood-derived myeloid-derived suppressor cells (MDSCs) E. Keltsch et al. Immunity & Ageing : I & A 2025 Jul

Abstract

Immunosenescence describes the gradual remodeling of immune responses, leading to disturbed immune homeostasis and increased susceptibility of older adults for infections, neoplasia and autoimmunity. Decline in cellular immunity is associated with intrinsic changes in the T cell compartment, but can be further pushed by age-related changes in cells regulating T cell immunity. Myeloid-derived suppressor cells (MDSCs) are potent inhibitors of T cell activation and function, whose induction requires chronic inflammation. Since aging is associated with low grade inflammation (inflammaging) and increased myelopoiesis, age-induced changes in MDSC induction and function in relation to T cell immunity were analyzed. MDSC numbers and functions were compared between “healthy” young and old adults, who were negatively diagnosed for severe acute and chronic diseases known to induce MDSC accumulation. MDSCs were either isolated from peripheral blood or generated in vitro from blood-derived CD14 cells. Aging was associated with significantly increased MDSC numbers in the monocytic- (M-) and polymorphonuclear (PMN-) MDSC subpopulations. MDSCs could be induced more efficiently from CD14 cells of old donors and these MDSCs inhibited CD3/28-induced T cell proliferation significantly better than MDSCs induced from young donors. Serum factors of old donors supported MDSC induction comparable to serum factors from young donors, but increased immunosuppressive activity of MDSCs was only achieved by serum from old donors. Elevated immunosuppressive activity of MDSCs from old donors was associated with major metabolic changes and increased intracellular levels of neutral and oxidized lipids known to promote immunosuppressive functions. Independent of age, MDSC-mediated suppression of T cell proliferation required direct MDSC– T cell contact. Besides their increased ability to inhibit activation-induced T cell proliferation, MDSCs from old donors strongly shift the immune response towards Th2 immunity and might thereby further contribute to impaired cell-mediated immunity during aging. These results indicate that immunosenescence of innate immunity comprises accumulation and functional changes in the MDSC compartment, which directly impacts T cell functions and contribute to age-associated impaired T cell immunity. Targeting MDSCs during aging might help to maintain functional T cell responses and increase the chance of healthy aging. The online version contains supplementary material available at 10.1186/s12979-025-00524-w.
Identification of anti-resorptive GPCRs by high-content imaging in human osteoclasts M. L. Price et al. Journal of Molecular Endocrinology 2025 Apr

Abstract

Osteoporosis diagnoses are increasing in the ageing population, and although some treatments exist, these have several disadvantages, highlighting the need to identify new drug targets. G protein-coupled receptors (GPCRs) are transmembrane proteins whose surface expression and extracellular activation make them desirable drug targets. Our previous studies have identified 144 GPCR genes to be expressed in primary human osteoclasts, which could provide novel drug targets. The development of high-throughput assays to assess osteoclast activity would improve the efficiency at which we could assess the effect of GPCR activation on human bone cells and could be utilised for future compound screening. Here, we assessed the utility of a high-content imaging (HCI) assay that measured cytoplasmic-to-nuclear translocation of the nuclear factor of activated T cells-1 (NFATc1), a transcription factor that is essential for osteoclast differentiation, and resorptive activity. We first demonstrated that the HCI assay detected changes in NFATc1 nuclear translocation in human primary osteoclasts using GIPR as a positive control, and then developed an automated analysis platform to assess NFATc1 in nuclei in an efficient and unbiased manner. We assessed six GPCRs simultaneously and identified four receptors (FFAR2, FFAR4, FPR1 and GPR35) that reduced osteoclast activity. Bone resorption assays and measurements of TRAP activity verified that activation of these GPCRs reduced osteoclast activity, and that receptor-specific antagonists prevented these effects. These studies demonstrate that HCI of NFATc1 can accurately assess osteoclast activity in human cells, reducing observer bias and increasing efficiency of target detection for future osteoclast-targeted osteoporosis therapies.
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more