海角破解版

EasySep? Mouse B Cell Isolation Kit

Immunomagnetic negative isolation of untouched mouse B cells

New format, same high quality! You may notice that your kit contents and packaging look slightly different from previous orders. We are currently updating the format of select EasySep? Mouse kits to include a Mouse FcR blocker instead of Normal Rat Serum. With this change, all components will now be shipped in a single package, while providing the same cell isolation performance as before.

EasySep? Mouse B Cell Isolation Kit

Immunomagnetic negative isolation of untouched mouse B cells

Catalog #
(Select a product)
Immunomagnetic negative isolation of untouched mouse B cells
Request Pricing Request Pricing

Product Advantages


  • Fast and easy-to-use

  • Up to 95% purity

  • No columns required

  • Untouched, viable cells

What's Included

  • EasySep? Mouse B Cell Isolation Kit (Catalog #19854)
    • EasySep? Mouse B Cell Isolation Cocktail, 0.5 mL
    • EasySep? Streptavidin RapidSpheres? 50001, 1 mL
    • EasySep? FcR Mouse Blocker, 0.2 mL
  • RoboSep? Mouse B Cell Isolation Kit (Catalog #19854RF)
    • EasySep? Mouse B Cell Isolation Cocktail, 0.5 mL
    • EasySep? Streptavidin RapidSpheres? 50001, 1 mL
    • EasySep? FcR Mouse Blocker, 0.2 mL
    • RoboSep? Buffer (Catalog #20104)
    • RoboSep? Filter Tips (Catalog #20125)
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

Overview

Easily and efficiently isolate highly purified mouse B cells from single-cell suspensions of splenocytes or other tissue samples by immunomagnetic negative selection, with the EasySep? Mouse B Cell Isolation Kit. Widely used in published research for more than 20 years, EasySep? combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.

In this EasySep? negative selection procedure, unwanted cells are labeled with antibody complexes and magnetic particles. Unwanted cells expressing the following markers are targeted for removal: CD11b, CD4, CD8a, Ly6G/C, Ter119, CD43, CD49b, and CD90.2. The magnetically labeled cells are then separated from the untouched desired B cells by using an EasySep? magnet and simply pouring or pipetting the desired cells into a new tube. Following magnetic cell isolation in as little as 15 minutes, the desired B cells are ready for downstream applications such as flow cytometry, culture, and cell-based experiments.

For isolation of B cells expressing CD11b or CD43, we recommend using the EasySep? Mouse Pan-B Cell Isolation Kit (Catalog #19844).

Learn more about how immunomagnetic EasySep? technology works or how to fully automate immunomagnetic cell isolation with RoboSep?. Explore additional products optimized for your workflow, including culture media, supplements, antibodies, and more.
Magnet Compatibility
? EasySep? Magnet (Catalog #18000)
? “The Big Easy” EasySep? Magnet (Catalog #18001)
? EasyPlate? EasySep? Magnet (Catalog 18102)
? EasyEights? EasySep? Magnet (Catalog #18103)
? RoboSep?-S (Catalog #21000)
Subtype
Cell Isolation Kits
Cell Type
B Cells
Species
Mouse
Sample Source
Other, Spleen
Selection Method
Negative
Application
Cell Isolation
Brand
EasySep, RoboSep
Area of Interest
Immunology

Data Figures

Typical EasySep™ Mouse B Cell Isolation Profile

Figure 1. Typical EasySep? Mouse B Cell Isolation Profile

Starting with mouse splenocytes, the B cell content (CD19+CD3-) of the isolated fraction is 97.6 ± 1.7% (mean ± SD), using the purple EasySep? Magnet.

EasySep? Cell Isolation Protocol Lengths

Figure 2. EasySep? Cell Isolation Protocol Lengths

Typical time taken (in minutes) to isolate cells using select EasySep? kits.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
19854RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19854
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Can EasySep™ Streptavidin RapidSpheres™ be used for either positive or negative selection?

Currently, EasySep™ Streptavidin RapidSphere™ kits are only available for negative selection and work by targeting and removing unwanted cells.

How does the separation work?

Streptavidin RapidSphere™ magnetic particles are crosslinked to unwanted cells using biotinylated antibodies. When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a new tube.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ Streptavidin RapidSphere™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Are cells isolated using EasySep™ RapidSphere™ products FACS-compatible?

Yes. Desired cells are unlabeled and ready to use in downstream applications, such as FACS analysis.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

Publications (52)

Sequences within and upstream of the mouse Ets1 gene drive high level expression in B cells, but are not sufficient for consistent expression in T cells PLOS One 2025 Mar

Abstract

The levels of transcription factor Ets1 are high in resting B and T cells, but are downregulated by signaling through antigen receptors and Toll-like receptors (TLRs). Loss of Ets1 in mice leads to excessive immune cell activation and development of an autoimmune syndrome and reduced Ets1 expression has been observed in human PBMCs in the context of autoimmune diseases. In B cells, Ets1 serves to prevent premature activation and differentiation to antibody-secreting cells. Given these important roles for Ets1 in the immune response, stringent control of Ets1 gene expression levels is required for homeostasis. However, the genetic regulatory elements that control expression of the Ets1 gene remain relatively unknown. Here we identify a topologically-associating domain (TAD) in the chromatin of B cells that includes the mouse Ets1 gene locus and describe an interaction hub that extends over 100?kb upstream and into the gene body. Additionally, we compile epigenetic datasets to find several putative regulatory elements within the interaction hub by identifying regions of high DNA accessibility and enrichment of active enhancer histone marks. Using reporter constructs, we determine that DNA sequences within this interaction hub are sufficient to direct reporter gene expression in lymphoid tissues of transgenic mice. Further analysis indicates that the reporter construct drives faithful expression of the reporter gene in mouse B cells, but variegated expression in T cells, suggesting the existence of T cell regulatory elements outside this region. To investigate how the downregulation of Ets1 transcription is associated with alterations in the epigenetic landscape of stimulated B cells, we performed ATAC-seq in resting and BCR-stimulated primary B cells and identified four regions within and upstream of the Ets1 locus that undergo changes in chromatin accessibility that correlate to Ets1 gene expression. Interestingly, functional analysis of several putative Ets1 regulatory elements using luciferase constructs suggested a high level of functional redundancy. Taken together our studies reveal a complex network of regulatory elements and transcription factors that coordinate the B cell-specific expression of Ets1.
B cells are not drivers of stromal cell activation during acute CNS infection Journal of Neuroinflammation 2025 Jun

Abstract

BackgroundCNS stromal cells, especially fibroblasts and endothelial cells, support leukocyte accumulation through upregulation of adhesion molecules and lymphoid chemokines. While chronically activated fibroblast networks can drive pathogenic immune cell aggregates known as tertiary lymphoid structures (TLS), early stromal cell activation during CNS infection can support anti-viral T cells. However, the cell types and factors driving early stromal cell activation is poorly explored.AimsA neurotropic murine coronavirus (mCoV) infection model was used to better characterize signals that promote fibroblast networks supporting accumulation of antiviral lymphocytes. Based on the early appearance of IgD+ B cells with unknown functions during several CNS infections, we probed their potential to activate stromal cells through lymphotoxin β (LTβ), a molecule critical in maintaining fibroblast-networks in lymphoid tissues as well as promoting TLS in autoimmunity and cancers.ResultsKinetic analysis of stromal cell activation in olfactory bulbs and brains revealed that upregulation of adhesion molecules and lymphoid chemokines Ccl19, Ccl21 and Cxcl13 closely tracked viral replication. Immunohistochemistry revealed that upregulation of the fibroblast marker podoplanin (PDPN) at meningeal and perivascular sites mirrored kinetics of RNA expression. Moreover, both B cells and T cells colocalized to areas of PDPN reactivity, supporting a potential role in regulating stromal cell activation. However, specific depletion of LTβ from B cells using Mb1-creERT2 x Ltβfl/fl mice had no effect on T or B cell recruitment or viral replication. B cell depletion by anti-CD20 antibody also had no adverse effects. Surprisingly, LTβR agonism reduced viral control and parenchymal T cell localization despite increasing stromal cell lymphoid chemokines and PDPN. Additional assessment of direct stromal cell activation by the viral RNA mimic poly I:C showed induction of Pdpn and Ccl19 preceding Ltb.ConclusionsNeither B cell-derived LTβ or B cells are primary drivers of stromal cell activation networks in the CNS following mCoV infection. Although supplementary agonist mediated LTβR engagement confirmed a role for LTβ in enhancing PDPN and lymphoid chemokine expression, it impeded T cell migration to the CNS parenchyma and viral control. Our data overall indicate that stromal cells can integrate LTβR signals to tune their activation, but that LTβ is not necessarily essential and can even dysregulate protective antiviral T cell functions.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12974-025-03491-7.
CFP1 promotes germinal center affinity maturation and restrains memory B cell differentiation through H3K4me3 modulation Y. Zhao et al. Nature Communications 2025 Aug

Abstract

Affinity maturation and differentiation of B cells in the germinal center (GC) are tightly controlled by epigenetically regulated transcription programs, but the underlying mechanisms are only partially understood. Here we show that Cfp1, an integral component of the histone methyltransferase complex Setd1A/B, is critically required for GC responses. Cfp1 deficiency in activated B cells greatly impairs GC formation with diminished proliferation, somatic hypermutation and affinity maturation. Mechanistically, Cfp1 deletion reduces H3K4me3 marks at a subset of cell cycle and GC-related genes and impairs their transcription. Importantly, Cfp1 promotes the expression of transcription factors MEF2B and OCA-B and the Bcl6 enhancer-promoter looping for its efficient induction. Accordingly, Cfp1-deficient GCB cells upregulate IRF4 and preferentially differentiate into plasmablasts. Furthermore, Cfp1 ablation upregulates a panel of pre-memory genes with elevated H3K4me3 and leads to markedly expanded memory B populations. In summary, our study reveals that Cfp1-safeguarded epigenetic regulation ensures proper dynamics of GCB cells for affinity maturation and prevents the pre-mature exit from GC as memory cells. Cellular differentiation decisions, such as fates of B cells following entry into the germinal centres, are governed by epigenetically and transcriptionally regulated paths for bifurcating cell fates. Here the authors show that CFP1 is a master epigenetic regulator of activated B cells and controls their hypermutation and affinity maturation via the histone methyltransferase complex Setd1A/B.
New format, same high quality! You may notice that your kit contents and packaging look slightly different from previous orders. We are currently updating the format of select EasySep? Mouse kits to include a Mouse FcR blocker instead of Normal Rat Serum. With this change, all components will now be shipped in a single package, while providing the same cell isolation performance as before.