şŁ˝ÇĆĆ˝â°ć

PneumaCult™-Ex Plus Medium

Serum- and BPE-free medium for expansion of primary human airway epithelial cells

Want even better HAEC expansion rates and differentiation potential? Use PneumaCult™-NGEx Medium, our most advanced and optimized expansion medium, to achieve up to 250x more cells in just three weeks.

PneumaCult™-Ex Plus Medium

Serum- and BPE-free medium for expansion of primary human airway epithelial cells

Catalog #
(Select a product)
Serum- and BPE-free medium for expansion of primary human airway epithelial cells
Request Pricing Request Pricing

Product Advantages


  • A defined, serum- and BPE-free cell culture medium that delivers consistent performance

  • PneumaCult™-Ex Plus Medium supports more cell expansion at each passage compared to other commercially available expansion media

  • When used together with PneumaCult™-ALI Medium or PneumaCult™-ALI-S Medium, PneumaCult™-Ex Plus Medium supports better ALI differentiation potential even after extended passaging compared to other commercially available expansion media

What's Included

  • PneumaCult™-Ex Plus Basal Medium, 490 mL
  • PneumaCult™-Ex Plus 50X Supplement, 10 mL
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

Overview

PneumaCult™-Ex Plus Medium is a defined, serum- and BPE-free cell culture medium that supports more expansion of primary human airway and nasal epithelial cells at each passage, compared to other commercially available expansion media. This medium also supports at least two additional passages of cell expansion with better differentiation potential, defined as the ability to form a pseudostratified mucociliary epithelium at the air-liquid interface (ALI) using PneumaCult™-ALI Medium (Catalog #05001) or a cuboidal epithelium using PneumaCult™-ALI-S Medium (Catalog #05050).

PneumaCult™-Ex Plus and either PneumaCult™-ALI or PneumaCult™-ALI-S constitute a fully integrated BPE-free culture system for in vitro human airway modeling. This robust and defined system is a valuable tool for basic respiratory research, toxicity studies, and drug development.

Learn how to culture human airway epithelial cells at the ALI in our On-Demand Pulmonary Course or browse our Frequently Asked Questions (FAQs) about the ALI culture workflow using PneumaCult™.

For information about introductory offers to try PneumaCult™ in your lab, fill out this form.
Subtype
Specialized Media
Cell Type
Airway Cells
Species
Human
Application
Cell Culture, Expansion, Maintenance
Brand
PneumaCult
Area of Interest
Epithelial Cell Biology
Formulation Category
Serum-Free

More Information

More Information
Safety Statement

CA WARNING: This product can expose you to Progesterone which is known to the State of California to cause cancer. For more information go to

Data Figures

Figure 1. Overview of the PneumaCult™ culture system

Expansion of human bronchial epithelial cells (HBECs) in submerged culture is performed with PneumaCult™-Ex Plus or PneumaCult™-Ex. During the early “Expansion Phase” of the air-liquid interface (ALI) culture procedure, PneumaCult™-Ex Plus or PneumaCult™-Ex is applied to the apical and basal chambers. Upon reaching confluence, the culture is air-lifted by removing the culture medium from both chambers, and adding PneumaCult™-ALI to the basal chamber only. Differentiation into a pseudostratified mucociliary epithelium is obtained following 21-28 days of incubation and can be maintained for more than one year.

Figure 2. HBECs cultured in PneumaCult™-Ex Plus have a faster expansion rate compared to those cultured in PneumaCult™-Ex and Bronchial Epithelial Growth Media

Commercially available, cryopreserved P1 HBECs were seeded into PneumaCult™-Ex Plus, PneumaCult™-Ex, or Bronchial Epithelial Growth Media. Cells cultured in PneumaCult™-Ex Plus have a significantly higher proliferation rate over 9 passages compared to those maintained in either control medium (n=6).

Figure 3. Representative morphology of HBECs

Representative live culture images for P4 HBECs cultured in PneumaCult™-Ex Plus, PneumaCult™-Ex, or Bronchial Epithelial Growth Media. Cells cultured in PneumaCult™-Ex Plus (A) are smaller and more tightly packed than those cultured in PneumaCult™-Ex (B) or Bronchial Epithelial Growth Media (C). All images were taken using a 10X objective.

Figure 4. HBECs cultured in PneumaCult™-Ex Plus maintain widespread expression of the basal cell markers CD49f and CD271

Immunocytochemistry detection of basal cell markers - CD49f (A, B, and C) and CD271 (D, E, and F) - for P4 HBECs cultured in PneumaCult™-Ex Plus (A and D), PneumaCult™-Ex (B and E), and Bronchial Epithelial Growth Media (C and F). All images were taken using a 10X objective.

Figure 5. HBECs cultured in PneumaCult™-Ex Plus have a higher proportion of CD271+CD49f+ cells

P4 HBECs cultured in PneumaCult™-Ex Plus (A), PneumaCult™-Ex (B), and Bronchial Epithelial Growth Media (C) were characterized by flow cytometry to detect expression of the basal cell markers CD49f and CD271. HBECs cultured in PneumaCult™-Ex Plus (A) have a higher proportion of cells coexpressing CD49f and CD271, compared to those cultured in PneumaCult™-Ex (B) and Bronchial Epithelial Growth Media (C).

Figure 6. HBECs cultured in PneumaCult™-Ex Plus differentiate into a pseudostratified mucociliary epithelium at later passages with the use of PneumaCult™-ALI

P4 HBECs were seeded and passaged using PneumaCult™-Ex Plus, PneumaCult™-Ex, or Bronchial Epithelial Growth Media, followed by ALI differentiation at each passage (P5-8) with the use of PneumaCult™-ALI. The ALI cultures at 28 days post air-lift were fixed and stained with antibodies for cilia marker AC-tubulin (red) and the goblet cell marker Muc5AC (green). The nuclei are counterstained with DAPI (blue). All images were taken using a 20X objective.

Figure 7. Electrophysiological characterization of differentiated HBECs (P4) that were expanded in PneumaCult™-Ex Plus, PneumaCult™-Ex, and Bronchial Epithelial Growth Media

Transepithelial electrical resistance (TEER) (A) and representative characterization of the ion channel activities (B) for ALI cultures at 28 days post air-lift using HBECs expanded in PneumaCult™-Ex Plus, PneumaCult™-Ex, or Bronchial Epithelial Growth Media. Amiloride: ENaC inhibitor. IBMX and Forskolin: CFTR activators. Genistein: CFTR potentiator. CFTRinh-172: CFTR inhibitor. UTP: Calciumactivated Chloride channels (CaCCs) activator. All ALI differentiation cultures were performed using PneumaCult™-ALI.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
05040
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05040
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05040
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Publications (38)

Evolutionary loss of an antibiotic efflux pump increases Pseudomonas aeruginosa quorum sensing mediated virulence in vivo S. E. Fernandes et al. Nature Communications 2025 Sep

Abstract

Antibiotic resistance is a threat to human health, yet recent work highlights how loss of resistance may drive pathogenesis in some bacteria. In two recent studies, we found that β-lactam antibiotics and nutrient stresses faced during infection selected for genetic inactivation of the Pseudomonas aeruginosa antibiotic efflux pump mexEFoprN . Unexpectedly, efflux pump mutations increased P. aeruginosa virulence during infection; however, neither the prevalence of mexEFoprN inactivating mutations in real human infections, nor the mechanisms driving increased virulence of efflux pump mutants are known. We hypothesized that human infection would select for virulence enhancing mutations. Using genome sequencing of clinical isolates, we show that mexEFoprN efflux pump inactivating mutations are enriched in P. aeruginosa isolates from cystic fibrosis infections relative to isolates from acute respiratory infections. Combining RNA-seq, metabolomics, genetic approaches, and infection models we show that efflux pump mutants have elevated quorum sensing driven expression of elastase and rhamnolipids which increase P. aeruginosa virulence during acute and chronic infections. Restoration of the efflux pump in a representative respiratory isolate and the notorious cystic fibrosis Liverpool epidemic strain reduced their virulence. These findings suggest that mutations inactivating antibiotic resistance mechanisms could lead to greater patient mortality and morbidity. Subject terms: Antimicrobial resistance, Pathogens, Bacteriology, Molecular evolution
Inhibition of LOXL2 Suppresses Nasal Mucosal Inflammation and Remodeling in Allergic Rhinitis Z. Li et al. Journal of Asthma and Allergy 2025 Sep

Abstract

Tissue remodeling is a key feature of allergic rhinitis (AR), but its underlying molecular mechanisms remain unclear. Lysyl oxidase-like 2 (LOXL2), a regulator of tissue remodeling, has not been studied in AR. Proteomic analysis was performed on nasal mucosal tissues from 8 AR patients and 8 healthy controls (HCs) to identify differentially expressed proteins (DEPs). The top three upregulated DEPs and their association with tissue remodeling markers were validated by immunofluorescence, Western blot, and RT-qPCR in an independent cohort of 30 AR patients and 30 HCs. In vitro, human nasal epithelial cells (HNECs) were treated with IL-4, and the effects of candidate protein inhibitors on remodeling were assessed. An AR mouse model was used to evaluate the impact of these inhibitors on nasal inflammation and remodeling. Proteomic analysis revealed a disease-specific protein expression profile in the nasal mucosa of AR patients, with the top three upregulated proteins being LOXL2, TGF-β1, and TIRAP. Tissue validation showed that LOXL2 was significantly upregulated in the nasal mucosa of AR patients compared to HCs and was significantly correlated with EMT markers (TGF-β1, α-SMA, and E-cadherin). In vitro, IL-4 stimulation significantly upregulated LOXL2, TGF-β1, and α-SMA, while downregulating E-cadherin in a dose-dependent manner in human nasal epithelial cells. These effects were reversed by inhibition of LOXL2. Further investigations demonstrated that LOXL2 promotes tissue remodeling through activation of the TGF-β1/Smad signaling pathway. In the AR mouse model, LOXL2 inhibitors significantly reduced nasal mucosal inflammation and tissue remodeling. Our proteomic analysis suggests that LOXL2 may be involved in the pathological remodeling processes of AR, potentially through modulation of the TGF-β1/Smad signaling pathway. These findings provide preliminary evidence that LOXL2 could serve as a candidate biomarker and a possible therapeutic target in AR, warranting further investigation.
Influenza-induced microRNA-155 expression is altered in extracellular vesicles derived from the COPD epithelium L. V. Reid et al. Frontiers in Cellular and Infection Microbiology 2025 May

Abstract

Influenza virus particularly affects those with chronic lung conditions such as Chronic Obstructive Pulmonary Disease (COPD). Airway epithelial cells are the first line of defense and primary target of influenza infection and release extracellular vesicles (EVs). EVs can transfer of biological molecules such as microRNAs (miRNAs) that can modulate the immune response to viruses through control of the innate and adaptive immune systems. The aim of this work was to profile the EV miRNAs released from bronchial epithelial cells in response to influenza infection and discover if EV miRNA expression was altered in COPD. Influenza infection of air-liquid interface (ALI) differentiated BCi-NS1.1 epithelial cells were characterized by analyzing the expression of antiviral genes, cell barrier permeability and cell death. EVs were isolated by filtration and size exclusion chromatography from the apical surface wash of ALI cultured bronchial epithelial cells. The EV miRNA cargo was sequenced and reads mapped to miRBase. The BCi sequencing results were further investigated by RT-qPCR and by using healthy and COPD primary epithelial cells. Infection of ALI cultured BCi cells with IAV at 3.6 x 10 6 IU/ml for 24 h led to significant upregulation of anti-viral genes without high levels of cell death. EV release from ALI-cultured BCi cells was confirmed using electron microscopy and detection of known tetraspanin EV markers using western blot and the ExoView R100 platform. Differential expression analyses identified 5 miRNA that had a fold change of >0.6: miR-155-5p, miR-122-5p, miR-378a-3p, miR-7-5p and miR-146a-5p (FDR<0.05). Differences between EV, non-EV and cellular levels of these miRNA were detected. Primary epithelial cell release of EV and their miRNA cargo was similar to that observed for BCi. Intriguingly, miR-155 expression was decreased in EVs derived from COPD patients compared to EVs from control samples. Epithelial EV miRNA release may be a key mechanism in modulating the response to IAV in the lungs. Furthermore, changes in EV miRNA expression may play a dysfunctional role in influenza-induced exacerbations of COPD. However, further work to fully characterize the function of EV miRNA in response to IAV in both health and COPD is required.
Want even better HAEC expansion rates and differentiation potential? Use PneumaCult™-NGEx Medium, our most advanced and optimized expansion medium, to achieve up to 250x more cells in just three weeks.