şŁ˝ÇĆĆ˝â°ć

PneumaCult™-ALI Medium

Serum- and BPE-free medium for human airway epithelial cells cultured at the air-liquid interface

Need robust HAECs for differentiation? Begin your workflow by expanding HAECs in PneumaCult™-NGEx Medium for optimal ALI cultures.

PneumaCult™-ALI Medium

Serum- and BPE-free medium for human airway epithelial cells cultured at the air-liquid interface

Catalog #
(Select a product)
Serum- and BPE-free medium for human airway epithelial cells cultured at the air-liquid interface
Request Pricing Request Pricing

Product Advantages


  • HBECs cultured with PneumaCult™-ALI undergo extensive mucociliary differentiation to form a pseudostratified epithelium that closely resembles the human airway

  • PneumaCult™-ALI is serum-free and BPE-free to minimize variability

What's Included

  • PneumaCult™-ALI Basal Medium, 450 mL
  • PneumaCult™-ALI 10X Supplement, 50 mL
  • PneumaCult™-ALI Maintenance Supplement (100X), 5 x 1 mL
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

Overview

PneumaCult™-ALI Medium (Catalog #05001) is a serum- and BPE-free medium for the culture of human airway epithelial cells at the air-liquid interface (ALI). Airway epithelial cells cultured in PneumaCult™-ALI Medium undergo extensive mucociliary differentiation to form a pseudostratified epithelium that exhibits morphological and functional characteristics similar to those of the human airway in vivo. PneumaCult™-ALI Medium is also available in a kit that includes 12 mm Transwell® inserts (Catalog #05021) or 6.5 mm Transwell® inserts (Catalog #05022).

Together, PneumaCult™-ALI Medium and PneumaCult™-NGEx Medium (Catalog #100-1505) constitute a fully integrated BPE-free culture system for in vitro human airway modeling that is also compatible with primary human nasal epithelial cells. This robust and defined system is a valuable tool for basic respiratory research, toxicity studies, and drug development.

Learn how to culture human airway epithelial cells at the ALI in our On-Demand Pulmonary Course or browse our Frequently Asked Questions (FAQs) about the ALI culture workflow using PneumaCult™.

For information about introductory offers to try PneumaCult™ in your lab, fill out this form.
Subtype
Specialized Media
Cell Type
Airway Cells
Species
Human
Application
Cell Culture, Differentiation, Maintenance, Organoid Culture
Brand
PneumaCult
Area of Interest
Disease Modeling, Drug Discovery and Toxicity Testing, Epithelial Cell Biology
Formulation Category
Serum-Free

More Information

More Information
Safety Statement

CA WARNING: This product can expose you to chemicals including Nickel Compounds which are known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to

Data Figures

Figure 1. Overview of the PneumaCult™ Culture System

Expansion of human bronchial epithelial cells (HBECs) in submerged culture is performed with PneumaCult™-Ex Plus or PneumaCult™-Ex. During the early Expansion Phase of the ALI culture procedure, PneumaCult™-Ex Plus or PneumaCult™-Ex is applied to the apical and basal chambers. Upon reaching confluence, the culture is air-lifted by removing the culture medium from both chambers, and adding PneumaCult™-ALI to the basal chamber only. Differentiation into a pseudostratified mucociliary epithelium is obtained following 21-28 days of incubation and can be maintained for more than one year.

Figure 2. HBECs Cultured in PneumaCult™-Ex Successfully Differentiate into a Pseudostratified Mucociliary Epithelium with PneumaCult™-ALI

Early-passage (P1-3) HBECs cultured in PneumaCult™-Ex successfully differentiate when cultured at air-liquid interface with PneumaCult™-ALI for 28 days. H&E staining revealed the pseudostratifi ed structure of the epithelium with cilia present at the apical surface (A). Periodic acid-Schiff staining demonstrated the presence of goblet cells (B). The presence of ciliated and goblet cells was also demonstrated by immunofl uorescence staining of cilia marker acetylated (AC)-Tubulin (green; C) and the goblet cell marker Mucin5AC (green; D). Appropriate positioning of basal cells along the transwell insert was visualized by immunofl uorescence staining using the basal cell markers p75NTR (green) and p63 (red; E,F). A representative merged image indicates the apical cells, detected by DAPI alone, positioned along the epithelium and in close contact with the basal cells (detected by DAPI, p63 and p75NTR co-labeling) located along the insert (G).

Figure 3. Electrophysiological characterization of differentiated HBECs (P4) that were expanded in PneumaCult™-Ex Plus, PneumaCult™-Ex, and Bronchial Epithelial Growth Media

TEER (A) and representative characterization of the ion channel activities (B) for ALI cultures at 28 days post air-lift using HBECs expanded in PneumaCult™-Ex Plus, PneumaCult™-Ex, or Bronchial Epithelial Growth Media. Amiloride: ENaC inhibitor. IBMX and Forskolin: CFTR activators. Genistein: CFTR potentiator. CFTRinh-172: CFTR inhibitor. UTP: Calciumactivated Chloride channels (CaCCs) activator. All ALI differentiation cultures were performed using PneumaCult™-ALI.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
05001
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05021
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05022
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05001
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05001
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05001
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05021
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05021
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05021
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05022
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05022
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05022
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Educational Materials (24)

Brochure
Brochure
Scientific Poster
Scientific Poster
On-Demand Training

Publications (121)

Evolutionary loss of an antibiotic efflux pump increases Pseudomonas aeruginosa quorum sensing mediated virulence in vivo S. E. Fernandes et al. Nature Communications 2025 Sep

Abstract

Antibiotic resistance is a threat to human health, yet recent work highlights how loss of resistance may drive pathogenesis in some bacteria. In two recent studies, we found that β-lactam antibiotics and nutrient stresses faced during infection selected for genetic inactivation of the Pseudomonas aeruginosa antibiotic efflux pump mexEFoprN . Unexpectedly, efflux pump mutations increased P. aeruginosa virulence during infection; however, neither the prevalence of mexEFoprN inactivating mutations in real human infections, nor the mechanisms driving increased virulence of efflux pump mutants are known. We hypothesized that human infection would select for virulence enhancing mutations. Using genome sequencing of clinical isolates, we show that mexEFoprN efflux pump inactivating mutations are enriched in P. aeruginosa isolates from cystic fibrosis infections relative to isolates from acute respiratory infections. Combining RNA-seq, metabolomics, genetic approaches, and infection models we show that efflux pump mutants have elevated quorum sensing driven expression of elastase and rhamnolipids which increase P. aeruginosa virulence during acute and chronic infections. Restoration of the efflux pump in a representative respiratory isolate and the notorious cystic fibrosis Liverpool epidemic strain reduced their virulence. These findings suggest that mutations inactivating antibiotic resistance mechanisms could lead to greater patient mortality and morbidity. Subject terms: Antimicrobial resistance, Pathogens, Bacteriology, Molecular evolution
Elexacaftor/Tezacaftor/Ivacaftor Supports Treatment for CF with ΔI1023-V1024-CFTR Y. Huang et al. International Journal of Molecular Sciences 2025 May

Abstract

Cystic Fibrosis (CF) is a common genetic disease in the United States, resulting from mutations in the Cystic Fibrosis transmembrane conductance regulator (cftr) gene. CFTR modulators, particularly Elexacaftor/Tezacaftor/Ivacaftor (ETI), have significantly improved clinical outcomes for patients with CF. However, many CFTR mutations are not eligible for CFTR modulator therapy due to their rarity. In this study, we report that a patient carrying rare complex CFTR mutations, c.1680-877G>T and c.3067_3072delATAGTG, showed positive clinical outcomes after ETI treatment. We demonstrate that ETI was able to increase the expression of CFTR harboring c.3067_3072delATAGTG in a heterologous system. Importantly, patient-derived nasal epithelial cells in an air–liquid interface (ALI) culture showed improved CFTR function following ETI treatment. These findings supported the initiation of ETI with the patient. Retrospective studies have suggested that the patient has shown small but steady improvement over the past two years in several clinical metrics, including lung function, body mass index (BMI), and sweat chloride levels. Our studies suggest that ETI could be beneficial for patients carrying c.3067_3072delATAGTG.
mTOR inhibition impacts the flagellin-augmented inflammatory and antimicrobial response of human airway epithelial cells to Pseudomonas aeruginosa C. C. V. Linge et al. PLOS One 2025 May

Abstract

The airway epithelium provides a first line of defense against pathogens by release of antimicrobial factors and neutrophil-attracting chemokines. Pseudomonas (P.) aeruginosa , a Gram-negative bacterium that expresses flagellin as an important virulence factor, is a common cause of injurious airway inflammation. The aim of our study was to determine the contribution of flagellin to the inflammatory, antimicrobial, and metabolic responses of the airway epithelium to P. aeruginosa . Furthermore, as we previously showed that targeting mTOR limited the glycolytic and inflammatory response induced by flagellin, we assessed the effect of rapamycin on human bronchial epithelial (HBE) cells stimulated with flagellated and non-flagellated P. aeruginosa. Primary pseudostratified HBE cells, cultured on an air-liquid-interface, were treated on the basolateral side with medium, vehicle or rapamycin, exposed on the apical side with flagellated or flagellin-deficient P. aeruginosa , and analyzed for their inflammatory, antimicrobial, and glycolytic responses. Flagellin augmented the P. aeruginosa -induced expression of antimicrobial factors and secretion of chemokines by HBE cells but did not further increase the glycolytic response. Treatment of HBE cells with rapamycin inhibited mTOR activation in general and flagellin-augmented mTOR activation in particular, but did not affect the glycolytic response. Rapamycin, however, diminished the flagellin-augmented inflammatory and antimicrobial response induced by Pseudomonas . These results demonstrate that flagellin is a significant factor that augments the inflammatory and antimicrobial response of human airway epithelial cells upon exposure to P. aeruginosa and suggest that mTOR inhibition by rapamycin in the airway epithelium diminishes these exaggerated responses.
Need robust HAECs for differentiation? Begin your workflow by expanding HAECs in PneumaCult™-NGEx Medium for optimal ALI cultures.