şŁ˝ÇĆĆ˝â°ć

MethoCult™ H4100

Base methylcellulose medium for human cells

MethoCult™ H4100

Base methylcellulose medium for human cells

Catalog #
(Select a product)
Base methylcellulose medium for human cells
Request Pricing Request Pricing

Overview

MethoCult™ H4100 is an incomplete medium that contains 2.6% methylcellulose in Iscove's MDM. MethoCult™ H4100 is suitable for the growth and enumeration of hematopoietic progenitor cells in colony-forming unit (CFU) assays of human bone marrow, mobilized peripheral blood, peripheral blood, and cord blood samples, when the appropriate growth factors and supplements are added. This formulation does not contain serum or cytokines and can also be used as a base for cloning cell lines in semi-solid media.

Browse our Frequently Asked Questions (FAQs) on performing the CFU assay and explore its utility as part of the cell therapy workflow.
Contains
• 2.6% Methylcellulose
• Iscove's MDM
Subtype
Semi-Solid Media, Specialized Media
Cell Type
Hematopoietic Stem and Progenitor Cells
Species
Human
Application
Cell Culture, Colony Assay, Functional Assay
Brand
MethoCult
Area of Interest
Stem Cell Biology
Formulation Category
Serum-Free

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
04100
Lot #
All
Language
English
Document Type
Product Name
Catalog #
04100
Lot #
All
Language
English
Document Type
Product Name
Catalog #
04100
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Why use semi-solid media?

Semi-solid media (methylcellulose-based MethoCult™ and collagen-based MegaCult™-C) allow the clonal progeny of a single progenitor cell to remain spatially isolated from other colonies within a culture, so they may be separately identified and counted.

Why use methylcellulose-based media?

Methylcellulose permits better growth of erythroid colonies than other types of semi-solid support systems (eg. agar) while allowing optimal myeloid colony formation. When appropriate cytokines are present, committed progenitor cells of both erythroid and granulocyte/macrophage lineages (CFU-GM, CFU-G, CFU-M) as well as multi-potential progenitor cells (CFU-GEMM), can be assayed simultaneously in the same culture dish.

Is it necessary to add antibiotics to the media?

No, aseptic technique should be sufficient to maintain sterile cultures. However, antibiotics (eg. Penicillin/Streptomycin) or anti-fungals (eg. Amphotericin B) may be added to the methylcellulose medium if desired.

Is there anything I can do if my cultures appear contaminated?

No, once contamination is visible, it is not possible to rescue the cultures by the addition of antibiotics. Bacteria and yeast inhibit colony formation by depleting nutrients or by releasing toxic substances.

Why can't I use a pipette to dispense methylcellulose-based media?

Methylcellulose is a viscous solution that cannot be accurately dispensed using a pipette due to adherence of the medium to the walls of the pipette tip. Blunt-End, 16 Gauge needles (Catalog #28110), in combination with 3 cc Syringes (Catalog #28230) are recommended for accurate dispensing of MethoCult™.

Can I 'pluck' the colonies for individual analysis?

Yes, colonies can be 'plucked' using a pipette with 200 µL sterile pipette tips or using a glass Pasteur pipette with an elongated tip. Individual colonies should be placed in a volume of 25 - 50 µL of medium, and diluted into suitable culture medium for further culture or analysis.

Why are low adherence dishes so important?

Adherent cells such as fibroblasts can cause inhibition of colony growth and obscure visualization of colonies.

Can MethoCult™ products be used for lymphoid progenitor CFU assays?

Human lymphoid progenitors (B, NK and T) seem to require stromal support for growth therefore cannot be grown in MethoCult™. Mouse pre-B clonogenic progenitors can be grown in MethoCult™ M3630 (Catalog #03630).

Is it possible to set up CFU assays in a 24-well plate?

Yes, as long as a plating concentration optimized for the smaller surface area of a well in a 24-well plate (1.9 cm2 as compared to ~9.5 cm2 for a 35 mm dish) is used for these assays. The number of replicate wells required to get an accurate estimation of CFU numbers may also need to be increased.

Can I stain colonies in MethoCult™ medium?

The cells in individual colonies in MethoCult™ can be stained, eg., for analysis of morphology or phenotype, after they are plucked from the dish and washed free of methylcellulose. Colonies grown in collagen-based MegaCult™-C medium can be used for immunohistochemical or enzymatic staining in situ after dehydration and fixation onto glass slides.

Are there differences in colony morphology with serum-free media?

Serum-containing media generally give better overall growth (colonies may appear larger) but there are no large differences in total colony numbers when CFU assays using serum-free media and serum-containing media are compared, provided that identical cytokines are present.

Can MethoCult™ be made with alternate base media?

Yes, this can be done as a 'custom' media order. Please contact techsupport@stemcell.com for more information.

Is there a MethoCult™ formulation suitable for HPP-CFC (high proliferative potential colony forming cell)?

Yes, MethoCult™ H4535 (Catalog #04535) can be used for the HPP-CFC assay as it does not contain EPO. The culture period is usually 28 days. It is not necessary to feed these cultures as growth factors in the medium are present in excess. As HPP-CFCs can be quite large, overplating can be a problem. It is recommended to plate cells at two or more different concentrations.

Publications (24)

Disruption of P2Y2 Signaling Promotes Breast Tumor Cell Dissemination by Reducing ATP-Dependent Calcium Elevation and Actin Localization to Cell Junctions M. L. Mull et al. International Journal of Molecular Sciences 2025 May

Abstract

The tumor microenvironment and healing wounds both contain extremely high concentrations of adenosine triphosphate (ATP) compared to normal tissue. The P2Y2 receptor, an ATP-activated purinergic receptor, is typically associated with pulmonary, endothelial, and neurological cell signaling. Here, we examine ATP-dependent signaling in breast epithelial cells and how it is altered in metastatic breast cancer. Using rapid imaging techniques, we show how ATP-activated P2Y2 signaling causes an increase in intracellular Ca 2+ in non-tumorigenic breast epithelial cells, approximately 3-fold higher than their tumorigenic and metastatic counterparts. The non-tumorigenic cells respond to increased Ca 2+ with actin polymerization and localization to the cell edges after phalloidin staining, while the metastatic cells remain unaffected. The increase in intracellular Ca 2+ after ATP stimulation was blunted to control levels using a P2Y2 antagonist, which also prevented actin mobilization and significantly increased cell dissemination from spheroids in non-tumorigenic cells. Furthermore, the lack of Ca 2+ changes and actin mobilization in metastatic breast cancer cells could be due to the reduced P2Y2 expression, which correlates with poorer overall survival in breast cancer patients. This study elucidates the rapid changes that occur after elevated intracellular Ca 2+ in breast epithelial cells and how metastatic cancer cells have adapted to evade this cellular response.
Therapeutic Potential of Adina rubella Hance Stem and Picroside III as a Differentiation Inducer in AML Cells via Mitochondrial ROS Accumulation Kwon et al. International Journal of Molecular Sciences 2025 Feb

Abstract

Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells and a differentiation block, highlighting the urgent need for novel differentiation-inducing therapies. This study evaluated Adina rubella Hance (ARH) stem as a potent differentiation inducer by systematically screening 200 plant extracts. ARH stem promoted phenotypic differentiation in AML cells. In addition to its differentiation-inducing effects, ARH stem exhibited strong antileukemic activities, such as inhibiting cell proliferation, inducing cell death, and enhancing mitochondrial reactive oxygen species (mtROS) levels, the latter of which is critical for its differentiation-promoting activity. Comparative analysis with the extracts from other parts of the plant confirmed the superior efficacy of the stem extract because of its unique chemical composition. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry analysis identified Picroside III as a major active compound within the stem extract, capable of recapitulating ARH stem-induced differentiation and demonstrating significant antileukemic properties. These findings underscore the therapeutic potential of ARH stem and its active component, Picroside III, as promising agents for differentiation-based treatment strategies in AML.
SMARCD1 is an essential expression-restricted metastasis modifier C. Ross et al. Communications Biology 2024 Oct

Abstract

Breast cancer is the most frequently diagnosed cancer worldwide, constituting 15% of cases in 2023. The predominant cause of breast cancer-related mortality is metastasis, and a lack of metastasis-targeted therapies perpetuates dismal outcomes for late-stage patients. By using meiotic genetics to study inherited transcriptional network regulation, we have identified, to the best of our knowledge, a new class of “essential expression-restricted” genes as potential candidates for metastasis-targeted therapeutics. Building upon previous work implicating the CCR4-NOT RNA deadenylase complex in metastasis, we demonstrate that RNA-binding proteins NANOS1, PUM2, and CPSF4 also regulate metastatic potential. Using various models and clinical data, we pinpoint Smarcd1 mRNA as a target of all three RNA-BPs. Strikingly, both high and low expression of Smarcd1 correlate with positive clinical outcomes, while intermediate expression significantly reduces the probability of survival. Applying the theory of “essential genes” from evolution, we identify 50 additional genes that require precise expression levels for metastasis to occur. Specifically, small perturbations in Smarcd1 expression significantly reduce metastasis in mouse models and alter splicing programs relevant to the ER+/HER2-enriched breast cancer. Identification subtype-specific essential expression-restricted metastasis modifiers introduces a novel class of genes that, when therapeutically “nudged” in either direction, may significantly improve late-stage breast cancer patients. Subject terms: Metastasis, Cancer genetics, Breast cancer