ŗ£½ĒĘƽā°ę

MammoCultā„¢ Human Medium Kit

For culture of human mammospheres and tumorspheres

MammoCultā„¢ Human Medium Kit

For culture of human mammospheres and tumorspheres

Catalog #
(Select a product)
For culture of human mammospheres and tumorspheres
Request Pricing Request Pricing

What's Included

  • MammoCultā„¢ Basal Medium (Human), 450 mL
  • MammoCultā„¢ Proliferation Supplement (Human), 50 mL
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

Overview

MammoCultā„¢ Medium (Human) is a serum-free, estrogen and progesterone-free culture medium optimized for the culture of mammospheres from normal human primary breast tissues and tumorspheres from human breast cancer cell lines. For preparation of complete MammoCultā„¢ Medium, Hydrocortisone Stock Solution (Catalog #07925) and Heparin Solution (Catalog #07980) are also required.
Subtype
Specialized Media
Cell Type
Cancer Cells and Cell Lines, Mammary Cells
Species
Human
Application
Cell Culture, Maintenance, Spheroid Culture
Brand
MammoCult
Area of Interest
Cancer, Epithelial Cell Biology
Formulation Category
Serum-Free

Data Figures

Protocol for isolation and identification of human and mouse mammary epithelial progenitor cells

Figure 1. Protocol for Isolation and Identification of Human and Mouse Mammary Epithelial Progenitor Cells

Phase contrast photographs of (A) a pure human myoepithelial cell colony, (B) a pure human luminal cell colony, and (C) a mixed human colony. (D) is a mouse colony. Unlike human mammary CFC colonies, subtypes of mouse mammary epithelial cell colonies are not easily identifiable. All colonies were cultured in either EpiCult™-B (Human: Catalog #05601) or EpiCult™-B (Mouse:Catalog #5610) in the presence of an irradiated NIH 3T3 feeder layer. Colonies were visualized by staining with Wright"s Giemsa. (E) is a picture of mammospheres obtained from primary human mammary epithelial cells and (F) is an image of tumorspheres obtained from MCF7 human breast cancer cell line.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
05620
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05620
Lot #
All
Language
English
Document Type
Product Name
Catalog #
05620
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Publications (89)

AXL promotes inflammatory breast cancer progression by regulating immunosuppressive macrophage polarization L. T. H. Phi et al. Breast Cancer Research : BCR 2025 May

Abstract

Tumor-associated macrophages (TAMs) are key promoters of inflammatory breast cancer (IBC), the most aggressive form of breast cancer. The receptor tyrosine kinase AXL is highly expressed in various cancer types, including IBC, but its role in TAMs remains unexplored. We examined the effects of AXL inhibitor TP-0903 on tumor growth and tumor microenvironment (TME) component M2 macrophages (CD206 + ) in IBC and triple-negative breast cancer mouse models using flow cytometry and immunohistochemical staining. Additionally, we knocked out AXL expression in human THP-1 monocytes and evaluated the effect of AXL signaling on immunosuppressive M2 macrophage polarization and IBC cell growth and migration. We then investigated the underlying mechanisms through RNA sequencing analysis. Last, we performed CIBERSORT deconvolution to analyze the association between AXL expression and tumor-infiltrating immune cell types in tumor samples from the Inflammatory Breast Cancer International Consortium. We found that inhibiting the AXL pathway significantly reduced IBC tumor growth and decreased CD206 + macrophage populations within tumors. Mechanistically, our in vitro data showed that AXL promoted M2 macrophage polarization and enhanced the secretion of immunosuppressive chemokines, including CCL20, CCL26, and epiregulin, via the transcription factor STAT6 and thereby accelerated IBC cell growth and migration. RNA sequencing analysis further indicated that AXL signaling in immunosuppressive M2 macrophages regulated the expression of molecules and cytokines, contributing to an immunosuppressive TME in IBC. Moreover, high AXL expression was correlated with larger populations of immunosuppressive immune cells but smaller populations of immunoactive immune cells in tissues from patients with IBC. AXL signaling promotes IBC growth by inducing M2 macrophage polarization and driving the secretion of immunosuppressive molecules and cytokines via STAT6 signaling, thereby contributing to an immunosuppressive TME. Collectively, these findings highlight the potential of targeting AXL signaling as a novel therapeutic approach for IBC that warrants further investigation in clinical trials. The online version contains supplementary material available at 10.1186/s13058-025-02015-8.
PD-L1 and IFN-γ modulate Non-Small Cell Lung Cancer (NSCLC) cell plasticity associated to immune checkpoint inhibitor (ICI)-mediated hyperprogressive disease (HPD) S. Angelicola et al. Journal of Translational Medicine 2025 Jan

Abstract

Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer death worldwide. Although immune checkpoint inhibitors (ICIs) have shown remarkable clinical efficacy, they can also induce a paradoxical cancer acceleration, known as hyperprogressive disease (HPD), whose causative mechanisms are still unclear. This study investigated the mechanisms of ICI resistance in an HPD-NSCLC model. Two primary cell cultures were established from samples of a NSCLC patient, before ICI initiation (ā€œbaselineā€, NSCLC-B) and during HPD (ā€œhyperprogressionā€, NSCLC-H). The cell lines were phenotypically and molecularly characterized through immunofluorescence, Western Blotting and RNA-Seq analysis. To assess cell plasticity and aggressiveness, cellular growth patterns were evaluated both in vitro and in vivo through 2D and 3D cell growth assays and patient-derived xenografts establishment. In vitro investigations, including the evaluation of cell sensitivity to interferon-gamma (IFN-γ) and cell response to PD-L1 modulation, were conducted to explore the influence of these factors on cell plasticity regulation. NSCLC-H exhibited increased expression of specific CD44 isoforms and a more aggressive phenotype, including organoid formation ability, compared to NSCLC-B. Plastic changes in NSCLC-H were well described by a deep transcriptome shift, that also affected IFN-γ–related genes, including PD-L1. IFN-γ–mediated cell growth inhibition was compromised in both 2D-cultured NSCLC-B and NSCLC-H cells. Further, the cytokine induced a partial activation of both type I and type II IFN-pathway mediators, together with a striking increase in NSCLC-B growth in 3D cell culture systems. Finally, low IFN-γ doses and PD-L1 modulation both promoted plastic changes in NSCLC-B, increasing CD44 expression and its ability to produce spheres. Our findings identified plasticity as a relevant hallmark of ICI-mediated HPD by demonstrating that ICIs can modulate the IFN-γ and PD-L1 pathways, driving tumor cell plasticity and fueling HPD development. The online version contains supplementary material available at 10.1186/s12967-024-06023-8.
Effects of a humanized CD47 antibody and recombinant SIRPα proteins on triple negative breast carcinoma stem cells S. Kaur et al. Frontiers in Cell and Developmental Biology 2024 Mar

Abstract

Signal regulatory protein-α (SIRPα, SHPS-1, CD172a) expressed on myeloid cells transmits inhibitory signals when it engages its counter-receptor CD47 on an adjacent cell. Elevated CD47 expression on some cancer cells thereby serves as an innate immune checkpoint that limits phagocytic clearance of tumor cells by macrophages and antigen presentation to T cells. Antibodies and recombinant SIRPα constructs that block the CD47-SIRPα interaction on macrophages exhibit anti-tumor activities in mouse models and are in ongoing clinical trials for treating several human cancers. Based on prior evidence that engaging SIRPα can also alter CD47 signaling in some nonmalignant cells, we compared direct effects of recombinant SIRPα-Fc and a humanized CD47 antibody that inhibits CD47-SIRPα interaction (CC-90002) on CD47 signaling in cancer stem cells derived from the MDA-MB- 231 triple-negative breast carcinoma cell line. Treatment with SIRPα-Fc significantly increased the formation of mammospheres by breast cancer stem cells as compared to CC-90002 treatment or controls. Furthermore, SIRPα-Fc treatment upregulated mRNA and protein expression of ALDH1 and altered the expression of genes involved in epithelial/mesenchymal transition pathways that are associated with a poor prognosis and enhanced metastatic activity. This indicates that SIRPα-Fc has CD47-mediated agonist activities in breast cancer stem cells affecting proliferation and metastasis pathways that differ from those of CC-90002. This SIRPα-induced CD47 signaling in breast carcinoma cells may limit the efficacy of SIRPα decoy therapeutics intended to stimulate innate antitumor immune responses.