New format, same high quality! You may notice that your kit contents and packaging look slightly different from previous orders. We are currently updating the format of select EasySep? Mouse kits to include a Mouse FcR blocker instead of Normal Rat Serum. With this change, all components will now be shipped in a single package, while providing the same cell isolation performance as before.
Request Pricing
Thank you for your interest in this product.
Please provide us with your contact information and your local representative
will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to 海角破解版 Technologies Canada Inc. and its subsidiaries and affiliates (“海角破解版”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
This site is protected by reCAPTCHA and the ?and??apply.
Easily isolate highly purified mouse F4/80+ cells from mouse splenocytes, lung tissue, and peritoneal lavage samples by immunomagnetic positive selection using the EasySep? Mouse F4/80 Positive Selection Kit . Widely used in published research for more than 20 years, EasySep? combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.
In this EasySep? positive selection procedure, desired cells are labeled with antibody complexes recognizing F4/80 and magnetic particles. Labeled cells are separated using an EasySep? magnet and by simply pouring or pipetting off the unwanted cells. The cells of interest remain in the tube. Following magnetic cell isolation in as little as 24 minutes, the desired F4/80+ cells are ready for downstream applications such as flow cytometry, cell culture, and cell-based experiments.
Learn more about how immunomagnetic EasySep? technology works. Explore additional products optimized for your workflow, including culture media, supplements, antibodies, and more.
Starting with a na?ve mouse lung single-cell suspension, the F4/80+ cell content of the isolated fraction is typically 94.3 ± 2.8% (mean ± SD) using the purple EasySep™ magnet. In the above example, the purities of the start and final isolated fractions are 26.3% and 95.3%, respectively.
Starting with lavage cells from the peritoneal cavity of a na?ve mouse, the F4/80+ cell content of the isolated fraction is typically 97.0 ± 0.4% (mean ± SD) using the purple EasySep™ magnet. In the above example, the purities of the start and final isolated fractions are 47.9% and 97.0%, respectively.
Starting with na?ve mouse splenocytes, the F4/80+ cell content of the isolated fraction is typically 88.8 ± 3.4% (mean ± SD) using the purple EasySep™ magnet. In the above example, the purities of the start and final isolated fractions are 5.4% and 90.6%, respectively.
This product is designed for use in the following research area(s) as part
of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we
offer to support each research area.
LncBADR promotes T cell-mediated autoimmunity by binding Mccc1 and Pcca to regulate BCAAs degradation
Y. Lei et al.
Journal of Neuroinflammation 2025 Sep
Abstract
T cell dysfunction is a pivotal driving factor in autoimmune diseases, yet its underlying regulatory mechanisms remain incompletely understood. The role of long non-coding RNAs (lncRNAs) in immune regulation has gradually been recognized, although their functional mechanisms in T cells remain elusive. This study focuses on lncBADR (LncRNA Branched-chain Amino acids Degradation Regulator), elucidating its mechanism by which it regulates branched-chain amino acids (BCAAs) metabolism to influence T cell effector functions. Mice with specific knockout of lncBADR (T celllncBADR?/?) exhibited markedly ameliorated experimental autoimmune encephalomyelitis (EAE) symptoms. Mechanistic investigations revealed that lncBADR inhibits BCAAs degradation by binding to the enzymes Mccc1 and Pcca, leading to the accumulation of BCAAs within T-cells. This, in turn, activates the mTOR-Stat1 signaling pathway, promoting IFN-γ secretion and exacerbating EAE pathology. In contrast, knockout of lncBADR restored BCAAs degradation, significantly reducing IFN-γ secretion in T cells and suppressing their pathogenic functions. Further studies demonstrated that high-BCAAs feeding partially reversed the protective effects of lncBADR knockout, indicating that lncBADR plays a crucial role in autoimmune inflammation by regulating BCAAs metabolism. This study offers new insights into targeting lncBADR or modulating BCAAs metabolism as potential therapeutic strategies for autoimmune diseases.Graphical Abstract
Supplementary InformationThe online version contains supplementary material available at 10.1186/s12974-025-03538-9.
Multinucleated giant cells are hallmarks of ovarian aging with unique immune and degradation-associated molecular signatures
PLOS Biology 2025 Jun
Abstract
The ovary is one of the first organs to exhibit signs of aging, characterized by reduced tissue function, chronic inflammation, and fibrosis. Multinucleated giant cells (MNGCs), formed by macrophage fusion, typically occur in chronic immune pathologies, including infectious and non-infectious granulomas and the foreign body response, but are also observed in the aging ovary. The function and consequence of ovarian MNGCs remain unknown as their biological activity is highly context-dependent, and their large size has limited their isolation and analysis through technologies such as single-cell RNA sequencing. In this study, we define ovarian MNGCs through a deep analysis of their presence across age and species using advanced imaging technologies as well as their unique transcriptome using laser capture microdissection. MNGCs form complex interconnected networks that increase with age in both mouse and nonhuman primate ovaries. MNGCs are characterized by high Gpnmb expression, a putative marker of ovarian and non-ovarian MNGCs. Pathway analysis highlighted functions in apoptotic cell clearance, lipid metabolism, proteolysis, immune processes, and increased oxidative phosphorylation and antioxidant activity. Thus, MNGCs have signatures related to degradative processes, immune function, and high metabolic activity. These processes were enriched in MNGCs compared to primary ovarian macrophages, suggesting discrete functionality. MNGCs express CD4 and colocalize with T-cells, which were enriched in regions of MNGCs, indicative of a close interaction between these immune cell types. These findings implicate MNGCs in modulation of the ovarian immune landscape during aging given their high penetrance and unique molecular signature that supports degradative and immune functions. Ovarian multinucleated giant cells are a unique macrophage population that arise within the aging mammalian ovary. This study characterizes their transcriptome in mice, uncovering a potential role in degradation of cellular debris and immune signaling, suggesting a potential contribution to ovarian inflammation during aging.
Calycosin suppresses the activating effect of granulocyte-macrophage-colony-stimulating factor-producing T helper cells on macrophages in experimental atherosclerosis
Frontiers in Pharmacology 2025 Jul
Abstract
BackgroundT cells are contributors to atherosclerosis pathogenesis. Granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells, a specialized helper T cell subset that highly expresses GM-CSF but lacks other helper T cell markers, could exacerbate atherosclerosis development. Calycosin has been reported to suppress atherosclerosis progression. However, the effect of calycosin on ThGM cells is unknown. This study was designed to test the calycosin-induced impact on the pro-atherosclerotic function of ThGM cells in a mouse atherosclerosis model.MethodsApolipoprotein E knockout (ApoE?/?) mice were fed a high-fat diet and calycosin. The phenotype and cytokine expression of aortic ThGM cells were assessed by flow cytometry. Calycosin-derived influences on ThGM cell differentiation, proliferation, and function were determined by flow cytometry, quantitative RT-PCR, Immunoblotting, gene silencing assays, and co-culture with macrophages.ResultsAortic ThGM cell frequency was attenuated after calycosin administration. Live aortic ThGM cells, phenotypically featuring CD4+CCR6?CCR8?CXCR3?CCR10+, showed slower proliferation and weaker macrophage-activating capability in calycosin-treated mice. Besides, calycosin repressed in vitro ThGM cell differentiation and subsequently impaired ThGM cell-mediated macrophage activation, oxidized low-density lipoprotein (Ox-LDL) uptake, and foam cell formation. Importantly, calycosin upregulated nuclear receptor subfamily 4 group A member 3 (NR4A3) in ThGM cells. NR4A3 silencing partially restored the function of calycosin-treated ThGM cells.ConclusionCalycosin inhibits ThGM cell activity to suppress ThGM-cell-mediated activation of pro-atherosclerotic macrophages to ultimately ameliorate atherosclerosis progression. Therefore, we revealed a novel mechanism by which calycosin protects against atherosclerosis.
New format, same high quality! You may notice that your kit contents and packaging look slightly different from previous orders. We are currently updating the format of select EasySep? Mouse kits to include a Mouse FcR blocker instead of Normal Rat Serum. With this change, all components will now be shipped in a single package, while providing the same cell isolation performance as before.
Quality Statement:
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT 海角破解版, REFER TO WWW.海角破解版.COM/COMPLIANCE.