海角破解版

EasySep? Human NK Cell Enrichment Kit

Immunomagnetic negative isolation of untouched human NK cells

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

EasySep? Human NK Cell Enrichment Kit

Immunomagnetic negative isolation of untouched human NK cells

Catalog #
(Select a product)
Immunomagnetic negative isolation of untouched human NK cells
Request Pricing Request Pricing

Product Advantages


  • Fast, easy-to-use and column-free

  • Up to 95% purity

  • Untouched, viable cells

What's Included

  • EasySep? Human NK Cell Enrichment Kit (Catalog #19055)
    • EasySep? Human NK Cell Enrichment Cocktail, 1 mL
    • EasySep? D Magnetic Particles, 2 x 1 mL
  • RoboSep? Human NK Cell Enrichment Kit with Filter Tips (Catalog #19055RF)
    • EasySep? Human NK Cell Enrichment Cocktail, 1 mL
    • EasySep? D Magnetic Particles, 2 x 1 mL
    • RoboSep? Buffer (Catalog #20104)
    • RoboSep? Filter Tips (Catalog #20125)
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

Overview

Easily and efficiently isolate highly purified human natural killer (NK) cells from fresh or previously frozen human peripheral blood mononuclear cells (PBMCs) or lysed leukapheresis samples by immunomagnetic negative selection, with the EasySep? Human NK Cell Enrichment Kit. Widely used in published research for more than 20 years, EasySep? combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.

In this EasySep? negative selection procedure, unwanted cells are labeled with antibody complexes and magnetic particles. The following unwanted cells are targeted for removal: granulocytes, T cells, B cells, monocytes, dendritic cells, and erythroid cells. The magnetically labeled cells are then separated from the untouched desired human NK cells by using an EasySep? magnet and simply pouring or pipetting the desired cells into a new tube. Following magnetic cell isolation, the desired NK cells are ready for downstream applications such as flow cytometry, culture, or DNA/RNA extraction.

For even faster cell isolations, we recommend the EasySep? Human NK Cell Isolation Kit (Catalog #17955) which isolates cells in just 8 minutes.

Learn more about how immunomagnetic EasySep? technology works or how to fully automate immunomagnetic cell isolation with RoboSep?. Alternatively, choose ready-to-use, ethically sourced, primary Human Peripheral Blood NK Cells, Frozen isolated with EasySep? Human NK Cell Enrichment Kit. Explore additional products optimized for your workflow, including culture media, supplements, antibodies, and more.
Magnet Compatibility
? EasySep? Magnet (Catalog #18000)
? “The Big Easy” EasySep? Magnet (Catalog #18001)
? Easy 50 EasySep? Magnet (Catalog #18002)
? EasyPlate? EasySep? Magnet (Catalog 18102)
? EasyEights? EasySep? Magnet (Catalog #18103)
? RoboSep?-S (Catalog #21000)
Subtype
Cell Isolation Kits
Cell Type
NK Cells
Species
Human
Sample Source
PBMC
Selection Method
Negative
Application
Cell Isolation
Brand
EasySep, RoboSep
Area of Interest
Immunology

Data Figures

FACS Profile Results With EasySep™ Human NK Cell Enrichment Kit

Figure 1. FACS Profile Results With EasySep™ Human NK Cell Enrichment Kit

The NK cell content of the enriched fraction varies, depending on the starting sample. Starting with previously frozen mononuclear cells containing more than 10% NK cells, the NK cell content of the enriched fraction typically ranges from 73% - 95%. Purities may be lower when starting with samples containing less than 10% NK cells.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
19055RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19055
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19055RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19055RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19055RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19055
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19055
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.

Publications (56)

Dysregulated inflammation in solid tumor malignancy patients shapes polyfunctional antibody responses to COVID-19 vaccination R. A. Purcell et al. NPJ Vaccines 2025 Oct

Abstract

Solid tumor malignancy (STM) patients experience increased risk of breakthrough SARS-CoV-2 infection owing to reduced COVID-19 vaccine immunogenicity. However, the underlying immunological causes of impaired neutralization remain poorly characterized. Furthermore, non-neutralizing antibody functions can contribute to reduced disease severity but remain understudied within high-risk populations. We dissected polyfunctional antibody responses in STM patients and age-matched controls who received adenoviral vector- or mRNA-based COVID-19 vaccine regimens. Elevated inflammatory biomarkers, including agalactosylated IgG, interleukin (IL)-6, IL-18, and an expanded population of CD11c?CD21? double negative 3 (DN3) B cells were observed in STM patients and were associated with impaired neutralization. In contrast, mRNA vaccination induced Fc effector functions that were comparable in patients and controls and were cross-reactive against SARS-CoV-2 variants. These data highlight the resilience of Fc functional antibodies and identify systemic inflammatory biomarkers that may underpin impaired neutralizing antibody responses, suggesting potential avenues for immunomodulation via rational vaccine design.
Osteoclast-expanded supercharged NK cells perform superior antitumour effector functions BMJ Oncology 2025 Jun

Abstract

AbstractObjectiveNatural killer (NK) cells are the largest innate lymphocyte subset with potent antitumour and antiviral functions. However, clinical utilisation of human NK cells is hampered due to a lack of reliable methods to augment their antitumour potential. We demonstrated technology in which human NK cells were cocultured with osteoclasts in the presence of probiotic bacteria. This approach significantly augmented the antitumour cytotoxicity and polyfunctionality of human NK cells, resulting in the generation of supercharged NK (sNK) cells.Methods and analysisWe explored the proteomic, transcriptomic and functional characterisation of sNK cells using cell imaging, flow cytometric analysis, 51-chromium release cytotoxicity assay, ELISA, ELIspot, IsoPLexis single-cell secretome analysis, proteomic analysis, RNA analysis, western blot and enzyme kinetics.ResultsWe found that sNK cells were less susceptible to split anergy and tumour-induced exhaustion. Proteomic analyses revealed that sNK cells significantly increased their cell motility and proliferation. Single-cell transcriptomes uncovered sNK cells undertaking a unique differentiation trajectory and turning on STAT1, JUN, BHLHE40, ELF1, MAX and MYC regulons essential for augmenting antitumour effector functions and proliferation, respectively. Both proteomic and single-cell transcriptomes revealed that an increase in Cathepsin C helped to augment the quantity and function of Granzyme B.ConclusionsThese results support that this unique method produces potent NK cells for clinical utilisation and delineate the molecular mechanisms associated with this process.
Modeling mesenchymal stromal cell support to hematopoiesis within a novel 3D artificial marrow organoid system Scientific Reports 2025 Jul

Abstract

The human bone marrow (BM) microenvironment involves hematopoietic and non-hematopoietic cell subsets organized in a complex architecture. Tremendous efforts have been made to model it in order to analyze normal or pathological hematopoiesis and its stromal counterpart. Herein, we report an original, fully-human in vitro 3D model of the BM microenvironment dedicated to study interactions taking place between mesenchymal stromal cells (MSC) and hematopoietic stem and progenitor cells (HSPC) during the hematopoietic differentiation. This fully-human Artificial Marrow Organoid (AMO) model is highly efficient to recapitulate MSC support to myeloid differentiation and NK cell development from the immature CD34?+?HSPCs to the most terminally differentiated CD15?+?polymorphonuclear neutrophils, CD64?+?monocytes or NKG2A-KIR2D?+?CD57?+?NK subset. Lastly, our model is suitable for evaluating anti-leukemic NK cell function in presence of therapeutic agents. Overall, the AMO is a versatile, low cost and simple model able to recapitulate normal hematopoiesis and allowing more physiological drug testing by taking into account both immune and non-immune BM microenvironment interactions.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-07717-9.
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more