ƽ

EasySep™ Human CD14 Positive Selection Kit II

Immunomagnetic positive selection of human CD14+ cells

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

EasySep™ Human CD14 Positive Selection Kit II

Immunomagnetic positive selection of human CD14+ cells

Catalog #
(Select a product)
Immunomagnetic positive selection of human CD14+ cells
Request Pricing Request Pricing

Product Advantages


  • Fast and easy-to-use

  • Up to 97% purity

  • No columns required

What's Included

  • EasySep™ Human CD14 Positive Selection Kit II (Catalog #17858)
    • EasySep™ Human CD14 Positive Selection Cocktail II, 1 mL
    • EasySep™ Dextran RapidSpheres™ 50100, 1 mL
  • EasySep™ Human CD14 Positive Selection Kit II (Catalog #100-0694)
    • EasySep™ Human CD14 Positive Selection Cocktail II, 1 x 10 mL
    • EasySep™ Dextran RapidSpheres™ 50103, 2 x 1 mL
  • Dzdz™ Human CD14 Positive Selection Kit II (Catalog #17858RF)
    • EasySep™ Human CD14 Positive Selection Cocktail II, 1 mL
    • EasySep™ Dextran RapidSpheres™ 50100, 1 mL
    • Dzdz™ Buffer (Catalog #20104)
    • Dzdz™ Filter Tips (Catalog #20125)
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

Overview

Isolate highly purified human CD14+ cells from fresh or previously frozen human peripheral blood mononuclear cells (PBMCs) or washed leukapheresis samples by immunomagnetic positive selection, with the EasySep™ Human CD14 Positive Selection Kit II. Widely used in published research for more than 20 years, EasySep™ combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.

In this EasySep™ positive selection procedure, desired cells are labeled with antibody complexes recognizing CD14 and magnetic particles. Labeled cells are separated using an EasySep™ magnet and by simply pouring or pipetting off the unwanted cells. The cells of interest remain in the tube. Following magnetic cell isolation in as little as 22 minutes, the desired CD14+ cells are ready for downstream applications such as flow cytometry, culture, or DNA/RNA extraction. The CD14 antigen is strongly expressed on monocytes and macrophages and weakly on granulocytes. It is also expressed on most tissue macrophages.

This product replaces the EasySep™ Human CD14 Positive Selection Kit (Catalog #18058) for even faster cell isolations.

For large-scale isolation of human CD14+ cells from leukapheresis samples, see the large-format (1x10^10 cells) kit (Catalog #100-0694).

Learn more about how immunomagnetic EasySep™ technology works or how to fully automate immunomagnetic cell isolation with Dzdz™. Alternatively, choose ready-to-use, ethically sourced, primary Human Peripheral Blood CD14+ Monocytes, Frozen isolated with EasySep™ Human CD14 Positive Selection Kit II. Explore additional products optimized for your workflow, including culture media, supplements, antibodies, and more.

Magnet Compatibility
• EasySep™ Magnet (Catalog #18000)
• “The Big Easy” EasySep™ Magnet (Catalog #18001)
• EasyPlate™ EasySep™ Magnet (Catalog #18102)
• EasyEights™ EasySep™ Magnet (Catalog #18103)
• Easy 50 EasySep™ Magnet (Catalog #18002)
• Dzdz™-S (Catalog #21000)
• Easy 250 EasySep™ Magnet (Catalog #100-0821)
Subtype
Cell Isolation Kits
Cell Type
Monocytes, Myeloid Cells
Species
Human
Sample Source
PBMC
Selection Method
Positive
Application
Cell Isolation
Brand
EasySep, RoboSep
Area of Interest
Chimerism, Immunology

Data Figures

Figure 1. Typical EasySep™ Human CD14 Positive Selection II Isolation Profile

Starting with a single cell suspension of human PBMCs, the CD14+ cell content of the isolated fraction is typically 95.3 ± 4.5% (mean ± SD using the purple EasySep™ Magnet).

FACS Data for Anti-Human CD14 Antibody, Clone M5E2, Alexa Fluor® 488-Conjugated

Figure 2. FACS Data for Anti-Human CD14 Antibody, Clone M5E2, Alexa Fluor® 488-Conjugated

(A) Flow cytometry analysis of human peripheral blood mononuclear cells (PBMCs) labeled with Anti-Human CD14 Antibody, Clone M5E2, Alexa Fluor® 488 (Catalog #60004AD) and Anti-Human CD45 Antibody, Clone HI30, APC (Catalog #60018AD). (B) Flow cytometry analysis of human PBMCs processed with the EasySep™ Human CD14 Positive Selection Kit (Catalog #17858) and labeled with Anti-Human CD14 Antibody, Clone M5E2, Alexa Fluor® 488. Histograms show labeling of PBMCs (Start) and isolated cells (Isolated). Labeling of start cells with Mouse IgG2a, kappa Isotype Control Antibody, Clone MOPC-173, Alexa Fluor® 488 (Catalog #60071AD) is shown (solid line histogram). (C) Flow cytometry analysis of human whole blood nucleated cells processed with the EasySep™ HLA Whole Blood CD33 Positive Selection Kit (Catalog #17885) and labeled with Anti-Human CD14 Antibody, Clone M5E2, Alexa Fluor® 488. Histograms show labeling of whole blood nucleated cells (Start) and isolated cells (Isolated). Labeling of start cells with Mouse IgG2a, kappa Isotype Control Antibody, Clone MOPC-173, Alexa Fluor® 488 is shown (solid line histogram).

FACS Data for Anti-Human CD14 Antibody, Clone M5E2, PE-Conjugated

Figure 3. FACS Data for Anti-Human CD14 Antibody, Clone M5E2, PE-Conjugated

(A) Flow cytometry analysis of human peripheral blood mononuclear cells (PBMCs) labeled with Anti-Human CD14 Antibody, Clone M5E2, PE (filled histogram; Catalog #60004PE), or Mouse IgG2a, kappa Isotype Control Antibody, Clone HI30, APC (Catalog #60018AZ). (B) Flow cytometry analysis of human PBMCs processed with the EasySep™ Human CD14 Positive Selection Kit (Catalog #17858) and labeled with Anti-Human CD14 Antibody, Clone M5E2, PE. Histograms show labeling of PBMCs (Start) and isolated cells (Isolated). Labeling of start cells with Mouse IgG2a, kappa Isotype Control Antibody, Clone MOPC-173, PE (Catalog #60071PE) is shown (solid line historgram). (C) Flow cytometry analysis of human whole blood nucleated cells processed with the EasySep™ HLA Whole Blood CD33 Positive Selection Kit (Catalog #17885) and labeled with Anti-Human CD14 Antibody, Clone M5E2, FITC. Histograms show labeling of whole blood nucleated cells (Start) and isolated cells (Isolated). Labeling of start cells with Mouse IgG2a, kappa Isotype Control Antibody, Clone MOPC-173, PE is shown (solid line histogram).

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
17858RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
17858
Lot #
All
Language
English
Document Type
Product Name
Catalog #
17858
Lot #
All
Language
English
Document Type
Product Name
Catalog #
100-0694
Lot #
All
Language
English
Document Type
Product Name
Catalog #
17858RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
17858RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
17858RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
17858
Lot #
All
Language
English
Document Type
Product Name
Catalog #
17858
Lot #
All
Language
English
Document Type
Product Name
Catalog #
100-0694
Lot #
All
Language
English
Document Type
Product Name
Catalog #
100-0694
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.

Publications (42)

A semi‐automated ASC speck assay to evaluate pyrin inflammasome activation P. Dai et al. Clinical & Translational Immunology 2025 Oct

Abstract

Objective: To develop a rapid functional assay to validate variants of uncertain significance (VUS) in the MEFV gene. Methods: Overactivity of the pyrin inflammasome pathway and ASC speck oligomerisation in response to stimulation with low concentrations of Clostridium difficile toxin A was directly visualised by immunofluorescence microscopy. A semi‐automated algorithm was developed to count cells and ASC specks. Results: The semi‐automated ASC speck assay is able to discriminate between healthy controls and patients with familial Mediterranean fever (FMF) and pyrin inflammasome overactivity with high sensitivity. It is also able to discriminate pyrin inflammasome overactivity from other autoinflammatory disease controls with high specificity. Conclusion: The semi‐automated ASC speck assay may be a useful test to functionally validate VUS in the MEFV gene and screen for pyrin inflammasome overactivity. A semi‐automated ASC speck assay using machine learning is able to discriminate between healthy controls and patients with familial Mediterranean fever (FMF) with high sensitivity. It is also able to discriminate FMF from other autoinflammatory diseases with high specificity.
Identification and characterization of a ubiquitin E3 RING ligase of the Chlamydia-like bacterium Simkania negevensis E-M. Hörner et al. PLOS Pathogens 2025 Nov

Abstract

In the arms race between a pathogen and the host, the defense mechanisms of the host cell, including the ubiquitin system, are often counteracted by bacteria. Simkania negevensis (Sne), an obligate intracellular Chlamydia-like bacterium connected with respiratory diseases, possesses numerous deubiquitinases, but not much is known about its other ubiquitin-modifying enzymes. Sne infects a wide range of hosts, developing inside a tubular vacuole in close contact with the host endoplasmic reticulum (ER) and mitochondria. Our study describes an uncharacterized Sne ubiquitin E3 RING-ligase (SNE_A12920 or SneRING), which primarily generates K63- and K11-linked ubiquitin chains and preferentially interacts with UbcH5b and UBE2T E2 enzymes. SneRING is expressed upon infection of various human cell lines, as well as amoebae. We show that a portion of the expressed SneRING co-localizes with mitochondria and ER and that the SneRING interactome includes mitochondrial and ER proteins involved in organelle morphology and stress response. Our work offers an initial characterization of a bacterial RING ligase potentially involved in the host cell remodeling to accommodate the unique intracellular lifestyle of Sne. Author summaryUbiquitination is a protein modification system that regulates protein degradation, localization, or interactions. As such, ubiquitination has many important functions in cell signalling, and its dysregulation can lead to cancer and neurodegenerative diseases. Bacteria that live and develop inside human or other eukaryotic cells, such as Chlamydia, often modulate the ubiquitination system to ensure their own survival. Simkania negevensis is a Chlamydia-like bacterium connected to respiratory diseases in humans. We have discovered a novel enzyme expressed by these bacteria that can ubiquitinate other proteins and thus potentially modify host cell processes that would otherwise hinder infection. In this work, we explore the function of this enzyme and determine its possible cellular localization, as well as some of the proteins it interacts with. Our study provides new insights into how bacterial pathogens adapt to and manipulate host cells using one of the major cell function regulatory systems.
Inactivation of branched-chain amino acid uptake halts Staphylococcus aureus growth and induces bacterial quiescence within macrophages PLOS Pathogens 2025 Aug

Abstract

Staphylococcus aureus is a notorious human pathogen that thrives in macrophages. It resides in mature phagolysosomes, where a subset of the bacteria eventually begin to proliferate. How S. aureus acquires essential nutrients, such as amino acids, for growth in this niche is poorly understood. Using a long-term primary human macrophage infection model, we show that branched-chain amino acid (BCAA) uptake mediated by the major transporter BrnQ1 is required by S. aureus for intracellular replication in macrophages and we provide mechanistic insight into the role of BCAAs in the success of intracellular S. aureus. Loss of BrnQ1 function renders intracellular S. aureus non-replicative and non-cytotoxic. The defective intracellular growth of S. aureus brnQ1 mutants can be rescued by supplementation with BCAAs or by overexpression of the BCAA transporters BrnQ1 or BcaP. Inactivation of the CodY repressor rescues the ability of S. aureus brnQ1 mutants to proliferate intracellularly independent of endogenous BCAA synthesis but dependent on BcaP expression. Non-replicating brnQ1 mutants in primary human macrophages become metabolically quiescent and display aberrant gene expression marked by failure to respond to intraphagosomal iron starvation. The bacteria remain, however, viable for an inordinate length of time. This dormant, yet viable bacterial state is distinct from classical persisters and small colony variants. Author summaryStaphylococcus aureus is a prominent human pathogen causing acute and chronic disease. It is facultatively intracellular and can reside within many host cell types, including professional phagocytes such as macrophages. The intracellular state contributes to dissemination, recurrence and infection chronicity. Chronic and relapsing infections are often associated with so-called persister phenotypes. Growth arrest and metabolic quiescence, accompanied by antibiotic tolerance, are hallmarks of persistence in bacteria. Antibiotic pressure is a major factor in triggering intracellular persistence. The small colony variant (SCV), an extensively studied form of S. aureus persister, can arise in the absence of antibiotic pressure and exhibits very distinctive phenotypic characteristics.Here, we describe a different growth-arrested state of S. aureus, which conforms to the definition of a non-antibiotic-driven form of intracellular dormancy, triggered by branched-chain amino acid starvation in macrophages. We show that loss of function of the major branched-chain amino acid transporter BrnQ1 renders intracellular S. aureus non-replicative and metabolically quiescent for an inordinate period of time. Upon stochastic exit from infected macrophages, brnQ1 mutants retain full virulence. This dormancy differs from classical persistence or SCVs and uncovers an underestimated role for BCAA uptake in the success of intracellular S. aureus.
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more