ƽ

MethoCult™ H4434 Classic

Methylcellulose-based medium with recombinant cytokines for human cells

MethoCult™ H4434 Classic

Methylcellulose-based medium with recombinant cytokines for human cells

Catalog #
(Select a product)
Methylcellulose-based medium with recombinant cytokines for human cells
Request Pricing Request Pricing

Overview

MethoCult™ H4434 Classic (MethoCult™ GF H4434) is a complete methylcellulose-based medium for the growth and enumeration of hematopoietic progenitor cells in colony-forming unit (CFU) assays of human bone marrow, mobilized peripheral blood, peripheral blood, and cord blood samples. MethoCult™ H4434 Classic is formulated to support the optimal growth of erythroid progenitor cells (BFU-E and CFU-E), granulocyte-macrophage progenitor cells (CFU-GM, CFU-G and CFU-M), and multipotential granulocyte, erythroid, macrophage and megakaryocyte progenitor cells (CFU-GEMM).

Browse our Frequently Asked Questions (FAQs) on performing the CFU assay and explore its utility as part of the cell therapy workflow.
Contains
• Methylcellulose in Iscove's MDM
• Fetal bovine serum
• Bovine serum albumin
• 2-Mercaptoethanol
• Recombinant human stem cell factor (SCF)
• Recombinant human interleukin 3 (IL-3)
• Recombinant human erythropoietin (EPO)
• Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF)
• Supplements
Subtype
Semi-Solid Media, Specialized Media
Cell Type
Hematopoietic Stem and Progenitor Cells
Species
Human, Non-Human Primate
Application
Cell Culture, Colony Assay, Functional Assay
Brand
MethoCult
Area of Interest
Stem Cell Biology

Data Figures

Procedure Summary for Hematopoietic CFU Assays

Figure 1. Procedure Summary for Hematopoietic CFU Assays

Examples of Colonies Derived from Human Hematopoietic Progenitors

Figure 2. Examples of Colonies Derived from Human Hematopoietic Progenitors

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
04444, 04434
Lot #
All
Language
English
Document Type
Product Name
Catalog #
04434
Lot #
All
Language
English
Document Type
Product Name
Catalog #
04444, 04434
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Why use semi-solid media?

Semi-solid media (methylcellulose-based MethoCult™ and collagen-based MegaCult™-C) allow the clonal progeny of a single progenitor cell to remain spatially isolated from other colonies within a culture, so they may be separately identified and counted.

Why use methylcellulose-based media?

Methylcellulose permits better growth of erythroid colonies than other types of semi-solid support systems (eg. agar) while allowing optimal myeloid colony formation. When appropriate cytokines are present, committed progenitor cells of both erythroid and granulocyte/macrophage lineages (CFU-GM, CFU-G, CFU-M) as well as multi-potential progenitor cells (CFU-GEMM), can be assayed simultaneously in the same culture dish.

Is it necessary to add antibiotics to the media?

No, aseptic technique should be sufficient to maintain sterile cultures. However, antibiotics (eg. Penicillin/Streptomycin) or anti-fungals (eg. Amphotericin B) may be added to the methylcellulose medium if desired.

Is there anything I can do if my cultures appear contaminated?

No, once contamination is visible, it is not possible to rescue the cultures by the addition of antibiotics. Bacteria and yeast inhibit colony formation by depleting nutrients or by releasing toxic substances.

Why can't I use a pipette to dispense methylcellulose-based media?

Methylcellulose is a viscous solution that cannot be accurately dispensed using a pipette due to adherence of the medium to the walls of the pipette tip. Blunt-End, 16 Gauge needles (Catalog #28110), in combination with 3 cc Syringes (Catalog #28230) are recommended for accurate dispensing of MethoCult™.

Can I 'pluck' the colonies for individual analysis?

Yes, colonies can be 'plucked' using a pipette with 200 µL sterile pipette tips or using a glass Pasteur pipette with an elongated tip. Individual colonies should be placed in a volume of 25 - 50 µL of medium, and diluted into suitable culture medium for further culture or analysis.

Why are low adherence dishes so important?

Adherent cells such as fibroblasts can cause inhibition of colony growth and obscure visualization of colonies.

Can MethoCult™ products be used for lymphoid progenitor CFU assays?

Human lymphoid progenitors (B, NK and T) seem to require stromal support for growth therefore cannot be grown in MethoCult™. Mouse pre-B clonogenic progenitors can be grown in MethoCult™ M3630 (Catalog #03630).

Is it possible to set up CFU assays in a 24-well plate?

Yes, as long as a plating concentration optimized for the smaller surface area of a well in a 24-well plate (1.9 cm2 as compared to ~9.5 cm2 for a 35 mm dish) is used for these assays. The number of replicate wells required to get an accurate estimation of CFU numbers may also need to be increased.

Can I stain colonies in MethoCult™ medium?

The cells in individual colonies in MethoCult™ can be stained, eg., for analysis of morphology or phenotype, after they are plucked from the dish and washed free of methylcellulose. Colonies grown in collagen-based MegaCult™-C medium can be used for immunohistochemical or enzymatic staining in situ after dehydration and fixation onto glass slides.

Are there differences in colony morphology with serum-free media?

Serum-containing media generally give better overall growth (colonies may appear larger) but there are no large differences in total colony numbers when CFU assays using serum-free media and serum-containing media are compared, provided that identical cytokines are present.

Can MethoCult™ be made with alternate base media?

Yes, this can be done as a 'custom' media order. Please contact techsupport@stemcell.com for more information.

Is there a MethoCult™ formulation suitable for HPP-CFC (high proliferative potential colony forming cell)?

Yes, MethoCult™ H4535 (Catalog #04535) can be used for the HPP-CFC assay as it does not contain EPO. The culture period is usually 28 days. It is not necessary to feed these cultures as growth factors in the medium are present in excess. As HPP-CFCs can be quite large, overplating can be a problem. It is recommended to plate cells at two or more different concentrations.

Publications (77)

m 6 A/IGF2BP3-driven serine biosynthesis fuels AML stemness and metabolic vulnerability F. Huang et al. Nature Communications 2025 May

Abstract

Metabolic reprogramming of amino acids represents a vulnerability in cancer cells, yet the mechanisms underlying serine metabolism in acute myeloid leukemia (AML) and leukemia stem/initiating cells (LSCs/LICs) remain unclear. Here, we identify RNA N 6 -methyladenosine (m 6 A) modification as a key regulator of serine biosynthesis in AML. Using a CRISPR/Cas9 screen, we find that depletion of m 6 A regulators IGF2BP3 or METTL14 sensitizes AML cells to serine and glycine (SG) deprivation. IGF2BP3 recognizies m 6 A on mRNAs of key serine synthesis pathway (SSP) genes (e.g., ATF4 , PHGDH , PSAT1 ), stabilizing these transcripts and sustaining serine production to meet the high metabolic demand of AML cells and LSCs/LICs. IGF2BP3 silencing combined with dietary SG restriction potently inhibits AML in vitro and in vivo, while its deletion spares normal hematopoiesis. Our findings reveal the critical role of m 6 A modification in the serine metabolic vulnerability of AML and highlight the IGF2BP3/m 6 A/SSP axis as a promising therapeutic target. Subject terms: Acute myeloid leukaemia, Cancer metabolism
TGF-β inhibition restores hematopoiesis and immune balance via bone marrow EPCs in aplastic anemia Zhang et al. Experimental & Molecular Medicine 2025 Jun

Abstract

Aplastic anemia (AA) is a life-threatening bone marrow (BM) failure syndrome characterized by pancytopenia. Recent studies revealed that dysfunctional endothelial progenitor cells (EPCs), critical components of the BM microenvironment, are involved in hematopoietic-dysfunction-related diseases, including AA. However, the mechanism underlying EPC damage in AA remains unknown. Here we find that transforming growth factor-β (TGF-β) signaling is hyperactive in dysfunctional AA EPCs with impaired hematopoietic support and immune regulatory ability, and TGF-β inhibition promotes hematopoiesis and immune rebalance by repairing dysfunctional EPCs. Through impaired EPC and AA murine models, we validated that TGF-β inhibition restores EPC dysfunction to improve hematopoiesis and immune status in vitro and in vivo. RNA sequencing and real-time quantitative polymerase chain reaction provided further validation. These results indicate that dysfunctional BM EPCs with hyperactive TGF-β signaling are involved in AA. TGF-β inhibition promotes multilineage hematopoiesis recovery and immune balance by repairing dysfunctional EPCs, providing a potential therapeutic strategy for AA. Subject terms: Experimental models of disease, Translational research
Characterization of E1 enzyme dependencies in mutant- UBA1 human cells reveals UBA6 as a novel therapeutic target in VEXAS syndrome C. A. Clough et al. Leukemia 2025 Jun

Abstract

VEXAS syndrome is a clonal hematopoietic disorder characterized by hyperinflammation, bone marrow failure, and high mortality. The molecular hallmark of VEXAS is somatic mutations at methionine 41 (M41) in the E1 ubiquitin enzyme, UBA1. These mutations induce a protein isoform switch, but the mechanisms underlying disease pathogenesis remain unclear. Here, we developed a human cell model of VEXAS syndrome by engineering the male monocytic THP1 cell line to express the common UBA1 M41V mutation. We found that mutant UBA1 M41V cells exhibit aberrant UBA1 isoform expression, increased vacuolization, and upregulation of the unfolded protein response, recapitulating key features of VEXAS. Moreover, proteomic analyses revealed dysregulated ubiquitination and proteotoxic stress in UBA1 M41V cells, with alterations in inflammatory and stress-response pathways. Functional studies demonstrated that UBA1 M41V cells were highly sensitive to genetic or pharmacological inhibition of E1 ubiquitin enzymes. Treatment with the E1 enzyme inhibitor TAK-243 preferentially suppressed colony formation of UBA1 M41V cells as compared to WT cells. Moreover, UBA1 M41V cells exhibited greater sensitivity to TAK-243 in competition assays and showed increased apoptosis. Interestingly, TAK-243 preferentially inhibited UBA6 activity over UBA1, suggesting that UBA6 may compensate for UBA1 dysfunction in UBA1 M41V cells. Targeting UBA6 using shRNA or the UBA6-specific inhibitor phytic acid further revealed an acquired dependency on UBA6 in UBA1 M41V cells. Phytic acid selectively impaired growth and colony formation in UBA1 M41V cells while sparing WT cells, highlighting a potential therapeutic vulnerability. Together, these findings establish a novel human model of VEXAS syndrome, identify key roles for UBA1 and UBA6 in disease pathogenesis, and demonstrate that UBA6 inhibition represents a promising therapeutic strategy for selectively targeting UBA1 mutant clones. Subject terms: Haematological cancer, Cell signalling