ŗ£½ĒĘƽā°ę

MethoCultā„¢ GF M3434

Methylcellulose-based medium with recombinant cytokines (including EPO) for mouse cells

MethoCultā„¢ GF M3434

Methylcellulose-based medium with recombinant cytokines (including EPO) for mouse cells

Catalog #
(Select a product)
Methylcellulose-based medium with recombinant cytokines (including EPO) for mouse cells
Request Pricing Request Pricing

Overview

MethoCultā„¢ GF M3434 is optimized for the growth and enumeration of hematopoietic progenitor cells in colony-forming unit (CFU) assays of mouse bone marrow, spleen, peripheral blood, and fetal liver cells. MethoCultā„¢ GF M3434 has been formulated to support optimal growth of primitive erythroid progenitor cells (BFU-E), granulocyte-macrophage progenitor cells (CFU-GM, CFU-G and CFU-M), and multi-potential granulocyte, erythroid, macrophage, megakaryocyte progenitor cells (CFU-GEMM). This formulation is compatible with ³§°Õ·”²Ń±¹¾±²õ¾±“DzŌā„¢ software for automated colony counting of mouse bone marrow CFU assays.

Browse our Frequently Asked Questions (FAQs) on performing the CFU assay.
Contains
• Methylcellulose in Iscove's MDM
• Fetal bovine serum
• Bovine serum albumin
• Recombinant human insulin
• Human transferrin (iron-saturated)
• 2-Mercaptoethanol
• Recombinant mouse stem cell factor (SCF)
• Recombinant mouse interleukin 3 (IL-3)
• Recombinant human interleukin 6 (IL-6)
• Recombinant human erythropoietin (EPO)
• Supplements
Subtype
Semi-Solid Media, Specialized Media
Cell Type
Hematopoietic Stem and Progenitor Cells
Species
Mouse
Application
Cell Culture, Colony Assay, Functional Assay
Brand
MethoCult
Area of Interest
Stem Cell Biology
Formulation Category
Methylcellulose-Based

Data Figures

Procedure Summary for Hematopoietic CFU Assays

Figure 1. Procedure Summary for Hematopoietic CFU Assays

Examples of Colonies Derived from Mouse Hematopoietic Progenitors

Figure 2. Examples of Colonies Derived from Mouse Hematopoietic Progenitors

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
03444, 03434
Lot #
All
Language
English
Document Type
Product Name
Catalog #
03434
Lot #
All
Language
English
Document Type
Product Name
Catalog #
03444, 03434
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Why use semi-solid media?

Semi-solid media (methylcellulose-based MethoCultā„¢ and collagen-based MegaCultā„¢-C) allow the clonal progeny of a single progenitor cell to remain spatially isolated from other colonies within a culture, so they may be separately identified and counted.

Why use methylcellulose-based media?

Methylcellulose permits better growth of erythroid colonies than other types of semi-solid support systems (eg. agar) while allowing optimal myeloid colony formation. When appropriate cytokines are present, committed progenitor cells of both erythroid and granulocyte/macrophage lineages (CFU-GM, CFU-G, CFU-M) as well as multi-potential progenitor cells (CFU-GEMM), can be assayed simultaneously in the same culture dish.

Is it necessary to add antibiotics to the media?

No, aseptic technique should be sufficient to maintain sterile cultures. However, antibiotics (eg. Penicillin/Streptomycin) or anti-fungals (eg. Amphotericin B) may be added to the methylcellulose medium if desired.

Is there anything I can do if my cultures appear contaminated?

No, once contamination is visible, it is not possible to rescue the cultures by the addition of antibiotics. Bacteria and yeast inhibit colony formation by depleting nutrients or by releasing toxic substances.

Why can't I use a pipette to dispense methylcellulose-based media?

Methylcellulose is a viscous solution that cannot be accurately dispensed using a pipette due to adherence of the medium to the walls of the pipette tip. Blunt-End, 16 Gauge needles (Catalog #28110), in combination with 3 cc Syringes (Catalog #28230) are recommended for accurate dispensing of MethoCultā„¢.

Can I 'pluck' the colonies for individual analysis?

Yes, colonies can be 'plucked' using a pipette with 200 µL sterile pipette tips or using a glass Pasteur pipette with an elongated tip. Individual colonies should be placed in a volume of 25 - 50 µL of medium, and diluted into suitable culture medium for further culture or analysis.

Why are low adherence dishes so important?

Adherent cells such as fibroblasts can cause inhibition of colony growth and obscure visualization of colonies.

Can MethoCult™ products be used for lymphoid progenitor CFU assays?

Human lymphoid progenitors (B, NK and T) seem to require stromal support for growth therefore cannot be grown in MethoCultā„¢. Mouse pre-B clonogenic progenitors can be grown in MethoCultā„¢ M3630 (Catalog #03630).

Is it possible to set up CFU assays in a 24-well plate?

Yes, as long as a plating concentration optimized for the smaller surface area of a well in a 24-well plate (1.9 cm2 as compared to ~9.5 cm2 for a 35 mm dish) is used for these assays. The number of replicate wells required to get an accurate estimation of CFU numbers may also need to be increased.

Can I stain colonies in MethoCultā„¢ medium?

The cells in individual colonies in MethoCultā„¢ can be stained, eg., for analysis of morphology or phenotype, after they are plucked from the dish and washed free of methylcellulose. Colonies grown in collagen-based MegaCultā„¢-C medium can be used for immunohistochemical or enzymatic staining in situ after dehydration and fixation onto glass slides.

Are there differences in colony morphology with serum-free media?

Serum-containing media generally give better overall growth (colonies may appear larger) but there are no large differences in total colony numbers when CFU assays using serum-free media and serum-containing media are compared, provided that identical cytokines are present.

Can MethoCult™ be made with alternate base media?

Yes, this can be done as a 'custom' media order. Please contact techsupport@stemcell.com for more information.

Is there a MethoCult™ formulation suitable for HPP-CFC (high proliferative potential colony forming cell)?

Yes, MethoCultā„¢ H4535 (Catalog #04535) can be used for the HPP-CFC assay as it does not contain EPO. The culture period is usually 28 days. It is not necessary to feed these cultures as growth factors in the medium are present in excess. As HPP-CFCs can be quite large, overplating can be a problem. It is recommended to plate cells at two or more different concentrations.

Publications (190)

Purine metabolism in bone marrow microenvironment inhibits hematopoietic stem cell differentiation under microgravity X. Liu et al. Stem Cell Research & Therapy 2025 Mar

Abstract

Spaceflight and microgravity environments have been shown to cause significant health impairments, including bone loss, immune dysfunction, and hematopoietic disorders. Hematopoietic stem cells (HSCs), as progenitors of the hematopoietic system, are critical for the continuous renewal and regulation of immune cells. Therefore, elucidating the regulatory mechanisms governing HSC fate and differentiation in microgravity environments is of paramount importance. In this study, hindlimb unloading (HU) was employed in mice to simulate microgravity conditions. After 28 days of HU, cells were isolated for analysis. Flow cytometry and colony-forming assays were utilized to assess changes in HSC proliferation and differentiation. Additionally, transcriptomic and untargeted metabolomic sequencing were performed to elucidate alterations in the metabolic pathways of the bone marrow microenvironment and their molecular regulatory effects on HSCs fate. Our findings revealed that 28 days of HU impaired hematopoietic function, leading to multi-organ damage and hematological disorders. The simulated microgravity environment significantly increased the HSCs population in the bone marrow, particularly within the long-term and short-term subtypes, while severely compromising the differentiation capacity of hematopoietic stem/progenitor cells. Transcriptomic analysis of HSCs, combined with metabolomic profiling of bone marrow supernatants, identified 1,631 differentially expressed genes and 58 metabolites with altered abundance. Gene set enrichment analysis indicated that HU suppressed key pathways, including hematopoietic cell lineage and MAPK signaling. Furthermore, integrated analyses revealed that metabolites affected by HU, particularly hypoxanthine enriched in the purine metabolism pathway, were closely associated with hematopoietic cell lineage and MAPK signaling pathways. Molecular docking simulations and in vitro experiments confirmed that hypoxanthine interacts directly with core molecules within these pathways, influencing their expression. These findings demonstrate that hypoxanthine in the bone marrow supernatant acts as a signaling mediator under microgravity, influencing HSCs fate by modulating hematopoietic cell lineage and MAPK signaling pathways. This study offers novel insights into the impact of microgravity on HSC fate and gene expression, underscoring the pivotal role of bone marrow microenvironmental metabolic changes in regulating key signaling pathways that determine hematopoietic destiny. The online version contains supplementary material available at 10.1186/s13287-025-04213-9.
AK2‐Deficient Mice Recapitulate Impaired Lymphopoiesis of Reticular Dysgenesis Patients, but Also Lack Erythropoiesis R. Waldmann et al. European Journal of Immunology 2025 Jul

Abstract

Reticular dysgenesis (RD) is a rare genetic disorder caused by mutations in the adenylate kinase 2 ( AK2 ) gene. It is characterized by a T āˆ’ B āˆ’ severe combined immunodeficiency, agranulocytosis, and sensorineural deafness. We established and characterized a haematopoiesis‐specific conditional Ak2 ‐knockout mouse model to provide a model system to study the molecular pathophysiology of RD. As expected from the human phenotype of RD, haematopoiesis‐specific AK2‐deficient embryos had a small, atrophic thymus consisting mainly of epithelial cells. No recognizable T‐cell component was observed, but B‐cell lineage precursor cells were present in the foetal liver. The effects of AK2 deficiency on myelopoiesis were less severe in mice than in humans. The absolute numbers of monocytes, macrophages, granulocytes and megakaryocytes in foetal liver as well as colony‐forming precursors were not reduced. In contrast to humans, haematopoiesis‐specific Ak2 ‐knockout mice exhibit embryonic lethality between E13 and E15 due to severe anaemia caused by an early block in definitive erythropoiesis. Murine erythroid progenitors mainly express AK2 and only low levels of functionally related kinases, which are unable to compensate for AK2 deficiency, in contrast to human erythroid progenitors.
Deletion of p18 INK4c enhances both osteogenesis and hematopoietic supportive capacity of bone marrow mesenchymal stromal cells W. Xing et al. Stem Cell Research & Therapy 2025 Jul

Abstract

p18 INK4 C (CDKN2C, encoded by p18 INK4c or Cdkn2c ) is an early G1-phase cyclin-dependent kinase inhibitor protein. Previous studies demonstrated enhanced self-renewal capacity of hematopoietic stem cells (HSCs) in p18 āˆ’/āˆ’ mice compared to wild-type (WT) mice. Given the critical role of bone marrow niche cells-particularly mesenchymal stromal cells (MSCs)-in hematopoiesis, this study investigated the functional alterations of p18 āˆ’/āˆ’ MSCs and their impact on hematopoietic support. Bone marrow derived MSCs were isolated from p18 āˆ’/āˆ’ and WT mice. Their proliferation and differentiation capacities were assessed, followed by evaluation of hematopoietic support using cobblestone area-forming cell assay and long-term culture-initiating cell assay. RNA sequencing was performed to analyze the transcriptional profile of p18 āˆ’/āˆ’ MSCs, with a focus on differentially expressed genes (DEGs). Key pathways associated with hematopoietic support were identified using Ingenuity Pathway Analysis. A candidate protein was quantified by ELISA, and its functional role in hematopoietic support was validated via a modified coculture system. p18 āˆ’/āˆ’ MSCs displayed an increased proliferation rate, preferential differentiation toward osteogenesis over adipogenesis, and enhanced hematopoietic support. RNA sequencing analysis identified 137 DEGs, with secreted phosphoprotein 1 ( Spp1 , encoding osteopontin, Opn) being significantly upregulated in p18 āˆ’/āˆ’ MSCs. Elevated Opn levels were confirmed in both bone marrow and MSC-conditioned media from p18 āˆ’/āˆ’ mice. Functional validation further demonstrated that Opn enhanced the hematopoietic supportive capacity of MSCs in vitro. p18 deficiency promotes osteogenic differentiation and enhances the hematopoietic supportive function of MSCs, likely mediated by Opn upregulation. These findings suggest a potential therapeutic strategy for improving bone regeneration and HSC expansion. The online version contains supplementary material available at 10.1186/s13287-025-04402-6.