New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more
Request Pricing
Thank you for your interest in this product.
Please provide us with your contact information and your local representative
will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to º£½ÇÆÆ½â°æ Technologies Canada Inc. and its subsidiaries and affiliates (“º£½ÇÆÆ½â°æâ€) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
This site is protected by reCAPTCHA and the Ìý²¹²Ô»åÌýÌý²¹±è±è±ô²â.
Easily isolate highly purified human CD271+ cells from fresh human bone marrow mononuclear cell (MNC) samples, using immunomagnetic positive selection, with the EasySepâ„¢ Human CD271 Positive Selection Kit II. Widely used in published research for more than 20 years, EasySepâ„¢ combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.
In this EasySepâ„¢ positive selection procedure, desired cells are labeled with antibody complexes recognizing CD271 and magnetic particles. The cocktail in this kit also contains an antibody to human Fc receptor to prevent non-specific binding. Labeled cells are separated using an EasySepâ„¢ magnet and by simply pouring off the unwanted cells. The cells of interest remain in the tube. Following magnetic cell isolation, the desired CD271+ cells are ready for downstream applications such as flow cytometry, culture, or DNA/RNA extraction. The CD271 antigen is expressed on multiple cell types, including mesenchymal stem and progenitor cells (MSCs).
Learn more about how immunomagnetic EasySepâ„¢ technology works. Explore additional products optimized for your workflow, including culture media, supplements, antibodies, and more.
This product is designed for use in the following research area(s) as part
of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we
offer to support each research area.
FOXO1 is a master regulator of memory programming in CAR T cells
Nature 2024 Apr
Abstract
A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2–6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states. The transcription factor FOXO1 has a key role in human T cell memory, and manipulating FOXO1 expression could provide a way to enhance CAR T cell therapies by increasing CAR T cell persistence and antitumour activity.
Epigenetic control of multiple genes with a lentiviral vector encoding transcriptional repressors fused to compact zinc finger arrays
Molecular Therapy. Methods & Clinical Development 2024 Apr
Abstract
Gene silencing without gene editing holds great potential for the development of safe therapeutic applications. Here, we describe a novel strategy to concomitantly repress multiple genes using zinc finger proteins fused to Krüppel-Associated Box repression domains (ZF-Rs). This was achieved via the optimization of a lentiviral system tailored for the delivery of ZF-Rs in hematopoietic cells. We showed that an optimal design of the lentiviral backbone is crucial to multiplex up to three ZF-Rs or two ZF-Rs and a chimeric antigen receptor. ZF-R expression had no impact on the integrity and functionality of transduced cells. Furthermore, gene repression in ZF-R-expressing T cells was highly efficient in vitro and in vivo during the entire monitoring period (up to 10 weeks), and it was accompanied by epigenetic remodeling events. Finally, we described an approach to improve ZF-R specificity to illustrate the path toward the generation of ZF-Rs with a safe clinical profile. In conclusion, we successfully developed an epigenetic-based cell engineering approach for concomitant modulation of multiple gene expressions that bypass the risks associated with DNA editing. Graphical abstract David Fenard and colleagues developed a lentiviral backbone for the multiplexing of up to three ZF-R sequences, allowing an efficient, stable, and specific epigenetic control of multiple genes in T cells or Tregs after a single lentiviral transduction event.
Both APRIL and antibody-fragment-based CAR T cells for myeloma induce BCMA downmodulation by trogocytosis and internalization.
N. Camviel et al.
Journal for immunotherapy of cancer 2022 nov
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) on multiple myeloma (MM) produces fast but not long-lasting responses. Reasons for treatment failure are poorly understood. CARs simultaneously targeting two antigens may represent an alternative. Here, we (1) designed and characterized novel A proliferation inducing ligand (APRIL) based dual-antigen targeting CARs, and (2) investigated mechanisms of resistance to CAR T cells with three different BCMA-binding moieties (APRIL, single-chain-variable-fragment, heavy-chain-only). METHODS Three new APRIL-CARs were designed and characterized. Human APRIL-CAR T cells were evaluated for their cytotoxic function in vitro and in vivo, for their polyfunctionality, immune synapse formation, memory, exhaustion phenotype and tonic signaling activity. To investigate resistance mechanisms, we analyzed BCMA levels and cellular localization and quantified CAR T cell-target cell interactions by live microscopy. Impact on pathway activation and tumor cell proliferation was assessed in vitro and in vivo. RESULTS APRIL-CAR T cells in a trimeric ligand binding conformation conferred fast but not sustained antitumor responses in vivo in mouse xenograft models. In vitro trimer-BB$\zeta$ CAR T cells were more polyfunctional and formed stronger immune synapses than monomer-BB$\zeta$ CAR T cells. After CAR T cell-myeloma cell contact, BCMA was rapidly downmodulated on target cells with all evaluated binding moieties. CAR T cells acquired BCMA by trogocytosis, and BCMA on MM cells was rapidly internalized. Since BCMA can be re-expressed during progression and persisting CAR T cells may not protect patients from relapse, we investigated whether non-functional CAR T cells play a role in tumor progression. While CAR T cell-MM cell interactions activated BCMA pathway, we did not find enhanced tumor growth in vitro or in vivo. CONCLUSION Antitumor responses with APRIL-CAR T cells were fast but not sustained. Rapid BCMA downmodulation occurred independently of whether an APRIL or antibody-based binding moiety was used. BCMA internalization mostly contributed to this effect, but trogocytosis by CAR T cells was also observed. Our study sheds light on the mechanisms underlying CAR T cell failure in MM when targeting BCMA and can inform the development of improved treatment strategies.
Animal component-free medium for the differentiation of MSCs into chondrocytes
Item added to your cart
EasySepâ„¢ Human CD271 Positive Selection Kit II
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more
Quality Statement:
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT º£½ÇÆÆ½â°æ, REFER TO WWW.º£½ÇÆÆ½â°æ.COM/COMPLIANCE.