ƽ

EasyPlate™ EasySep™ Magnet

Multiple sample processing magnet for column-free immunomagnetic cell separation

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

EasyPlate™ EasySep™ Magnet

Multiple sample processing magnet for column-free immunomagnetic cell separation

Catalog #
(Select a product)
Multiple sample processing magnet for column-free immunomagnetic cell separation
Request Pricing Request Pricing

Overview

Easily and efficiently perform magnetic cell separation when processing multiple samples and a small number of cells simultaneously using the EasyPlate™ EasySep™ Magnet with selected EasySep™ reagents. The EasyEights™ EasySep™ Magnet is capable of processing small samples up to 2 x 107 cells per well. This magnet is designed to hold a round-bottom non-tissue culture-treated 96-well plate.

Not sure which magnet to use? Visit our EasySep™ Cell Separation Magnets page to compare the different options and select the appropriate magnet for your research.

Learn more about how immunomagnetic EasySep™ technology works.
Species
Human, Mouse, Other
Application
Cell Isolation
Brand
EasySep

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
18102
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

Which cell separation kits are compatible with the EasyPlate™ EasySep™ magnet?

The EasyPlate™-compatible human EasySep™ kits are:
19051 (T Cells), 19052 (CD4 T cells), 19157 (Memory CD4 T Cells), 19053 (CD8 T Cells), 19054 (B Cells), 19254 (Naïve B cells), 19055 (NK Cells), 19058 (Monocytes without CD16 depletion), 19059 (Monocytes)

The EasyPlate™-compatible mouse EasySep™ kits are:
19751 (T Cells), 19752 (CD4 T cells), 19753 (CD8 T Cells), 19754 (B Cells), 19755 (NK Cells - please contact Tech Support)

Publications (4)

Iron deficiency causes aspartate-sensitive dysfunction in CD8+ T cells Nature Communications 2025 Jun

Abstract

Iron is an irreplaceable co-factor for metabolism. Iron deficiency affects >1 billion people and decreased iron availability impairs immunity. Nevertheless, how iron deprivation impacts immune cell function remains poorly characterised. We interrogate how physiologically low iron availability affects CD8+ T cell metabolism and function, using multi-omic and metabolic labelling approaches. Iron limitation does not substantially alter initial post-activation increases in cell size and CD25 upregulation. However, low iron profoundly stalls proliferation (without influencing cell viability), alters histone methylation status, gene expression, and disrupts mitochondrial membrane potential. Glucose and glutamine metabolism in the TCA cycle is limited and partially reverses to a reductive trajectory. Previous studies identified mitochondria-derived aspartate as crucial for proliferation of transformed cells. Despite aberrant TCA cycling, aspartate is increased in stalled iron deficient CD8+ T cells but is not utilised for nucleotide synthesis, likely due to trapping within depolarised mitochondria. Exogenous aspartate markedly rescues expansion and some functions of severely iron-deficient CD8+ T cells. Overall, iron scarcity creates a mitochondrial-located metabolic bottleneck, which is bypassed by supplying inhibited biochemical processes with aspartate. These findings reveal molecular consequences of iron deficiency for CD8+ T cell function, providing mechanistic insight into the basis for immune impairment during iron deficiency. Iron has been shown to be necessary for the activation and differentiation of CD8+ T cells. Here the authors investigate changes in CD8+ T cell metabolism in iron limiting conditions and find that aspartate is increased yet downstream nucleotide synthesis is suppressed and addition of exogenous aspartate partially rescues T cell function.
Systemic inflammation impairs myelopoiesis and interferon type I responses in humans Nature Immunology 2025 Apr

Abstract

Systemic inflammatory conditions are classically characterized by an acute hyperinflammatory phase, followed by a late immunosuppressive phase that elevates the susceptibility to secondary infections. Comprehensive mechanistic understanding of these phases is largely lacking. To address this gap, we leveraged a controlled, human in vivo model of lipopolysaccharide (LPS)-induced systemic inflammation encompassing both phases. Single-cell RNA sequencing during the acute hyperinflammatory phase identified an inflammatory CD163+SLC39A8+CALR+ monocyte-like subset (infMono) at 4 h post-LPS administration. The late immunosuppressive phase was characterized by diminished expression of type I interferon (IFN)-responsive genes in monocytes, impaired myelopoiesis and a pronounced attenuation of the immune response on a secondary LPS challenge 1 week after the first. The infMono gene program and impaired myelopoiesis were also detected in patient cohorts with bacterial sepsis and coronavirus disease. IFNβ treatment restored type-I IFN responses and proinflammatory cytokine production and induced monocyte maturation, suggesting a potential treatment option for immunosuppression. Stunnenberg et al. use a model of lipopolysaccharide injection in humans to characterize the transcriptomic landscape of bone marrow and blood immune cells during the hyperinflammatory and immunosuppressed phases of systemic inflammation.
Longevity of antibody responses is associated with distinct antigen-specific B cell subsets early after infection Frontiers in Immunology 2024 Dec

Abstract

IntroductionUpon infection, T cell-driven B cell responses in GC reactions induce memory B cells and antibody-secreting cells that secrete protective antibodies. How formation of specifically long-lived plasma cells is regulated via the interplay between specific B and CD4+ T cells is not well understood. Generally, antibody levels decline over time after clearance of the primary infection.MethodIn this study, convalescent individuals with stable RBD antibody levels (n=14, “sustainers”) were compared with donors (n=13) with the greatest antibody decline from a cohort of 132. To investigate the role of the cellular immune compartment in the maintenance of antibody levels, SARS-CoV-2-specific responses at 4 to 6 weeks post-mild COVID-19 infection were characterized using deep immune profiling.ResultsBoth groups had similar frequencies of total SARS-CoV-2-specific B and CD4+ T cells. Sustainers had fewer Spike-specific IgG+ memory B cells early after infection and increased neutralizing capacity of RBD antibodies over time, unlike the declining group. However, declining IgG titers correlated with lower frequency of Spike-specific CD4+ T cells.ConclusionThese data suggest that “sustainers” have unique dynamics of GC reactions, yield different outputs of terminally differentiating cells, and improve the quality of protective antibodies over time. This study helps identify factors controlling formation of long-lived PC and sustained antibody responses.
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more