ƽ

ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

cGMP, human T cell activation and expansion reagent

ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

cGMP, human T cell activation and expansion reagent

Catalog #
(Select a product)
cGMP, human T cell activation and expansion reagent
Request Pricing Request Pricing

Product Advantages

  • Activate T cells with confidence for use in clinical applications using activators produced under relevant cGMPs
  • Achieve robust activation without the use of magnetic beads, feeder cells, or antigens
  • Maintain a high viability of activated and expanded T cells with gentle activation stimulus
  • Rely on a highly stable, filter-sterilized soluble reagent

Overview

Achieve robust activation and expansion of human T cells for use in clinical applications–without the use of magnetic beads, feeder cells, or antigens.

This product’s gentle activation stimulus ensures a high viability of activated T cells, which can be further expanded in ܲԴǰܱ™-ݹ—a high-performance T cell expansion medium manufactured under relevant cGMP regulations and guidelines. ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator consists of soluble antibody complexes that bind to and cross-link CD3, CD28, and CD2 cell surface ligands, providing the required primary and co-stimulatory signals for T cell culture and activation.

ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator is designed for cell therapy clinical research applications, qualified for use as an ancillary material (AM) following the framework outlined in USP<1043> and/or PH. EUR. 5.2.12. ƽ can work with you to qualify this reagent as an AM under an approved Investigational New Drug (IND) application, Biological Licensing Application (BLA), or Clinical Trial Application (CTA). Learn more about how we can support your regulatory needs here.
Contains
• Anti-human CD3 monospecific antibody complex
• Anti-human CD28 monospecific antibody complex
• Anti-human CD2 monospecific antibody complex
• Phosphate buffered-saline (PBS), containing 0.02% TWEEN® 20
Subtype
Supplements
Cell Type
T Cells, T Cells, CD4+, T Cells, CD8+
Species
Human
Application
Activation, Cell Culture, Expansion
Brand
ImmunoCult
Area of Interest
Cancer, Immunology, Cell Therapy Development

Data Figures

Activated human T cells clustering together

Figure 1. Morphology of Activated Human T Cells Stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

A clustered morphology is seen in activated human T cells. Cells were isolated using EasySep™ Human T Cell Isolation Kit, stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator for 3 days in ܲԴǰܱ™-ݹ supplemented with recombinant human interleukin-2 (rhIL-2).

Flow cytometry data showing human T cell activation assessed by CD25 expression.

Figure 2. Activation of Human T Cells Stimulated with ImmunoCult™ Human CD3/CD28/CD2 Activator.

Human T cells were stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator and cultured in ܲԴǰܱ™-ݹ. Activation of viable CD4+ and CD8+ T cells were assessed by CD25 expression, using flow cytometry. Following 3 days of culture, the frequency of CD25-positive cells was (A) 91.4% for CD4+ T cells and (B) 87.8% for CD8+ T cells. The gray line depicts day 3 CD4+ and CD8+ T cells cultured without ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator.

Human T cell cumulative fold expansion and activation during a 12-day culture period.

Figure 3. Robust Human T Cell Expansion and High Viability Achieved Using ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

Human T cells were expanded over 12 days with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator in ܲԴǰܱ™-ݹ supplemented with rhIL-2. On day 0, 1 x 10^6 isolated human T cells were stimulated with 25 μL of ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator in ܲԴǰܱ™-ݹ supplemented with rhIL-2.No additional ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator was added during the 12-day culture period (mean ± SD in 3 experiments with 7 donors).

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
100-0785
Lot #
All
Language
English
Document Type
Product Name
Catalog #
100-0785
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Publications (24)

CD137L promotes immune surveillance in melanoma via HLTF regulation L. Liang et al. Nature Communications 2025 Sep

Abstract

Immune checkpoint blockers (ICBs) have demonstrated substantial efficacy across various malignancies, yet the benefits of ICBs are limited to a subset of patients. Therefore, it is essential to identify novel therapeutic targets. By integrating multi-omics data from cohorts of patients with melanoma treated with ICBs, a positive correlation is observed between tumor CD137L expression and the efficacy of PD-1 blockade. Functionally, CD137L induction in cancer cells significantly enhances anti-tumor immunity by promoting CD8 + T cell survival, both in vivo and in vitro. Mechanistically, helicase-like transcription factor (HLTF) is identified as a pivotal transcriptional regulator of CD137L , controlling its expression through phosphorylation of serine at position 398. Therapeutically, the AMPK agonist AICAR (acadesine) as an inducer of CD137L , exhibiting synergistic effects with PD-1 or CTLA-4 blockade. In summary, our findings elucidate a mechanism controlling CD137L expression and highlight a promising combination therapy to enhance the efficacy of ICBs in melanoma. One Sentence Summary: Inducing co-stimulatory immune checkpoint CD137L expression in melanoma cells enhances T cell-mediated anti-tumor immunity. Subject terms: Tumour immunology, Cancer immunotherapy
Targeting triple-negative breast cancer using cord-blood CD34⁺ HSPC-derived mesothelin-specific CAR-NKT cells with potent antitumor activity Li et al. Journal of Hematology & Oncology 2025 Oct

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of ER, PR, and HER2 expression. Its aggressive behavior, high degree of tumor heterogeneity, and immunosuppressive tumor microenvironment (TME) are associated with poor clinical outcomes, rapid disease progression, and limited therapeutic options. Although chimeric antigen receptor (CAR)-engineered T cell therapy has shown certain promise, its applicability in TNBC is hindered by antigen escape, TME-mediated suppression, and the logistical constraints of autologous cell production. In this study, we employed hematopoietic stem and progenitor cell (HSPC) gene engineering and a feeder-free HSPC differentiation culture to generate allogeneic IL-15-enhanced, mesothelin-specific CAR-engineered invariant natural killer T ( Allo15 MCAR-NKT) cells. These cells demonstrated robust and multifaceted antitumor activity against TNBC, mediated by CAR- and NK receptor-dependent cytotoxicity, as well as selective targeting of CD1d + TME immunosuppressive cells through their TCR. In both orthotopic and metastatic TNBC xenograft models, Allo15 MCAR-NKT cells demonstrated potent antitumor activity, associated with robust effector and cytotoxic phenotypes, low exhaustion, and a favorable safety profile without inducing graft-versus-host disease. Together, these results support Allo15 MCAR-NKT cells as a next-generation, off-the-shelf immunotherapy with strong therapeutic potential for TNBC, particularly in the context of metastasis, immune evasion, and treatment resistance. The online version contains supplementary material available at 10.1186/s13045-025-01736-9.
Renal cancer cells acquire immune surface protein through trogocytosis and horizontal gene transfer H. Q. Marcarian et al. PLOS One 2025 May

Abstract

Trogocytosis is an underappreciated phenomenon that shapes the immune microenvironment surrounding many types of solid tumors. The consequences of membrane-bound proteins being deposited from a donor immune cell to a recipient cancer cell via trogocytosis are still unclear. Here, we report that human clear cell renal carcinoma tumors stably express the lymphoid markers CD45, CD56, CD14, and CD16. Flow cytometry performed on fresh kidney tumors revealed consistent CD45 expression on tumor cells, as well as varying levels of the other markers mentioned previously. These results were consistent with our immunofluorescent analysis, which also revealed colocalization of lymphoid markers with carbonic anhydrase 9, a standard kidney tumor marker. RNA analysis showed a significant upregulation of genes typically associated with immune cells by tumor cells. Finally, we show evidence of chromosomal DNA being transferred from immune cells to tumor cells through physical contact. This horizontal gene transfer has transcriptional consequences in the recipient tumor cell, resulting in a fusion phenotype that expresses both immune and cancer specific proteins. This work demonstrates a novel mechanism by which tumor cell protein expression is altered through the acquisition of surface membrane fragments and genomic DNA from infiltrating lymphocytes. These results alter the way in which we understand tumor-immune cell interactions and may reveal new insights into the mechanisms by which tumors develop. Additionally, further studies into trogocytosis and other mechanisms of contact-mediated cellular transfer will help push the field towards the next generation of immunotherapies and biomarkers for treating renal cell carcinoma and other cancers.