Showing 85 - 96 of 171 results for "ipsc"
1 Product
- ReferenceLukovic D et al. (MAY 2017) Stem cell research 21 23--25
Generation of a human iPSC line from a patient with retinitis pigmentosa caused by mutation in PRPF8 gene.
The human iPSC cell line, RP2-FiPS4F1 (RCPFi001-A), derived from dermal fibroblasts from the patient with retinitis pigmentosa caused by the mutation of the gene PRPF8, was generated by non-integrative reprogramming technology using OCT3/4, SOX2, CMYC and KLF4 reprogramming factors.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceVarga E et al. (MAY 2017) Stem cell research 21 19--22
Establishment of an induced pluripotent stem cell (iPSC) line from a 9-year old male with autism spectrum disorder (ASD).
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically characterized patient with autism spectrum disorder (ASD). The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus delivery system. The pluripotency of transgene-free iPSCs was verified by immunocytochemistry for pluripotency markers and by spontaneous in vitro differentiation towards the 3 germ layers. Furthermore, the iPSC line showed normal karyotype. Our model might offer a good platform to study the pathomechanism of ASD, also for drug testing, early biomarker discovery and gene therapy studies.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceZhang S et al. (MAR 2017) Stem cell research 19 49--51
Generation of a human induced pluripotent stem cell (iPSC) line from a 64year old male patient with multiple schwannoma.
Peripheral blood was collected from a clinically diagnosed 64-year old male multiple schwannoma patient. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for further pathological studies of multiple schwannoma.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceZhang S et al. (MAR 2017) Stem cell research 19 43--45
Derivation of human induced pluripotent stem cell (iPSC) line from a 79year old sporadic male Parkinson's disease patient.
Peripheral blood was collected from a clinically diagnosed 79-year old male sporadic Parkinson's disease patient. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model can be used to study the mechanism of sporadic Parkinson's disease and to test new drugs. Resource Table.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceZhang S et al. (MAR 2017) Stem cell research 19 34--36
Characterization of human induced pluripotent stem cell (iPSC) line from a 72year old male patient with later onset Alzheimer's disease.
Peripheral blood was collected from a clinically diagnosed 72-year old male patient with later onset Alzheimer's disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for studying the pathological mechanism of Alzheimer's disease.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceZhang S et al. (MAR 2017) Stem cell research 19 31--33
Development of human induced pluripotent stem cell (iPSC) line from a 60year old female patient with multiple schwannoma.
Peripheral blood was collected from a clinically diagnosed 60-year old female patient with multiple schwannoma. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for further pathological studies of multiple schwannoma.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceEllis BW et al. (MAR 2017) Biomicrofluidics 11 2 024105
Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine.
The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceGuo D et al. (JAN 2017) Stem cell research 18 67--69
Creating a patient carried Men1 gene point mutation on wild type iPSCs locus mediated by CRISPR/Cas9 and ssODN.
A patient specific point mutation (c.1288GtextgreaterT) of Men1 gene was introduced into wide type iPSC line with CRISPR/Cas9 and single-stranded donor oligonucleotides carrying the mutation. The mutated iPSC line has a heterozygous c.1288GtextgreaterT mutation on exon-9 of Men1 that was confirmed by sequencing analysis. The karyotype of this line was normal and the pluripotency was demonstrated by its ability to differentiate into three germ layers. These artificially created Men1 mutation in wild type iPSC line will help to dissect out the molecular basis of two patients carried the same mutation from one family who were differentially represented hypoglycemia.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceMa D et al. (JAN 2017) Stem cell research 18 54--56
Generation of a human induced pluripotent stem cell (iPSC) line carrying the Parkinson's disease linked LRRK2 variant S1647T.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 64-year old male Parkinson's disease (PD) patient with S1647T variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model will be useful for further function studies and therapeutic screening.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceMa D et al. (JAN 2017) Stem cell research 18 51--53
Development of a human induced pluripotent stem cell (iPSC) line from a Parkinson's disease patient carrying the N551K variant in LRRK2 gene.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 64-year old male Parkinson's disease (PD) patient with N551K variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model can complement in vivo PD models for pathophysiological studies and drug screening.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceMa D et al. (JAN 2017) Stem cell research 18 48--50
Derivation of human induced pluripotent stem cell (iPSC) line with LRRK2 gene R1398H variant in Parkinson's disease.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 72-year old female Parkinson's disease (PD) patient with R1398H variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model provides a good platform for studying the mechanism of PD, and also for drug testing and gene therapy studies.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1 - ReferenceMa D et al. (JAN 2017) Stem cell research 18 45--47
Reprogramming of a human induced pluripotent stem cell (iPSC) line from a Parkinson's disease patient with a R1628P variant in the LRRK2 gene.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 59-year old male Parkinson's disease (PD) patient with R1628P variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model will provide a good resource for further pathophysiological studies of PD.Catalog #: Product Name: 85850 尘罢别厂搁鈩1 Catalog #: 85850 Product Name: 尘罢别厂搁鈩1
1 Product
Shop By
Filter Results
- Resource Type
-
- Reference 125 items
- Area of Interest
-
- Cancer 2 items
- Cell Line Development 3 items
- Drug Discovery and Toxicity Testing 1 item
- Neuroscience 20 items
- Stem Cell Biology 95 items
- Brand
-
- ALDEFLUOR 1 item
- AggreWell 4 items
- BrainPhys 6 items
- CryoStor 4 items
- EasySep 2 items
- MesenCult 1 item
- MethoCult 1 item
- RSeT 1 item
- STEMdiff 9 items
- TeSR 87 items
- Cell Type
-
- Cancer Cells and Cell Lines 1 item
- Cardiomyocytes, PSC-Derived 1 item
- Hematopoietic Stem and Progenitor Cells 2 items
- Mesenchymal Stem and Progenitor Cells 3 items
- Monocytes 1 item
- Neural Cells, PSC-Derived 4 items
- Neural Stem and Progenitor Cells 15 items
- Neurons 14 items
- Pluripotent Stem Cells 98 items