Product Information
Items 1945 to 1956 of 13914 total
- Product Information Sheet
Catalog #: Lot #: Language: Product Name: Catalog #:100-0485Lot #:Lot 1000157162 and higher For 100-0485 | Lot 1000157164 and higher For 100-1077Language:EnglishProduct Name:Gentle Cell Dissociation ReagentCatalog #:100-1077Lot #:Lot 1000157162 and higher For 100-0485 | Lot 1000157164 and higher For 100-1077Language:EnglishProduct Name:Gentle Cell Dissociation ReagentCatalog #: 100-0485 Lot #: Lot 1000157162 and higher For 100-0485 | Lot 1000157164 and higher For 100-1077 Language: English Product Name: Gentle Cell Dissociation Reagent Catalog #: 100-1077 Lot #: Lot 1000157162 and higher For 100-0485 | Lot 1000157164 and higher For 100-1077 Language: English Product Name: Gentle Cell Dissociation Reagent - Reference(May 2025) Nature Communications 16
Improving cellular fitness of human stem cell-derived islets under hypoxia
Stem cell-derived islet cell therapy can effectively treat type 1 diabetes, but its efficacy is hindered by low oxygen supply post-transplantation, particularly in subcutaneous spaces and encapsulation devices, leading to cell dysfunction. The response to hypoxia and effective strategies to alleviate its detrimental effects remain poorly understood. Here, we show that ? cells within stem cell-derived islets gradually undergo a decline in cell identity and metabolic function in hypoxia. This is linked to reduced expression of immediate early genes (EGR1, FOS, and JUN), which downregulates key ? cell transcription factors. We further identified genes important for maintaining ? cell fitness in hypoxia, with EDN3 as a potent player. Elevated EDN3 expression preserves ? cell identity and function in hypoxia by modulating genes involved in ? cell maturation, glucose sensing and regulation. These insights improve the understanding of hypoxia’s impact on stem cell-derived islets, offering a potential intervention for clinical applications. Hypoxia impairs the efficacy of stem cell-derived islet cell therapy, making it a potential barrier for treatment of type 1 diabetes. Wang et al. identify EDN3 as a key factor that preserves ? cell identity and function in hypoxia, offering possible strategies to improve therapeutic outcomes.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Technical ManualReference(Dec 2024) PLOS ONE 19 12Human iPSC-derived myelinating organoids and globoid cells to study Krabbe disease
Krabbe disease (Kd) is a lysosomal storage disorder (LSD) caused by the deficiency of the lysosomal galactosylceramidase (GALC) which cleaves the myelin enriched lipid galactosylceramide (GalCer). Accumulated GalCer is catabolized into the cytotoxic lipid psychosine that causes myelinating cells death and demyelination which recruits microglia/macrophages that fail to digest myelin debris and become globoid cells. Here, to understand the pathological mechanisms of Kd, we used induced pluripotent stem cells (iPSCs) from Kd patients to produce myelinating organoids and microglia. We show that Kd organoids have no obvious defects in neurogenesis, astrogenesis, and oligodendrogenesis but manifest early myelination defects. Specifically, Kd organoids showed shorter but a similar number of myelin internodes than Controls at the peak of myelination and a reduced number and shorter internodes at a later time point. Interestingly, myelin is affected in the absence of autophagy and mTOR pathway dysregulation, suggesting lack of lysosomal dysfunction which makes this organoid model a very valuable tool to study the early events that drive demyelination in Kd. Kd iPSC-derived microglia show a marginal rate of globoid cell formation under normal culture conditions that is drastically increased upon GalCer feeding. Under normal culture conditions, Kd microglia show a minor LAMP1 content decrease and a slight increase in the autophagy protein LC3B. Upon GalCer feeding, Kd cells show accumulation of autophagy proteins and strong LAMP1 reduction that at a later time point are reverted showing the compensatory capabilities of globoid cells. Altogether, this supports the value of our cultures as tools to study the mechanisms that drive globoid cell formation and the compensatory mechanism in play to overcome GalCer accumulation in Kd.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 100-0276 mTeSRâ„¢ Plus Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-1020Lot #:AllLanguage:EnglishProduct Name:CellPoreâ„¢ Transfection Kit 300Catalog #: 100-1020 Lot #: All Language: English Product Name: CellPoreâ„¢ Transfection Kit 300 Reference(Sep 2024) Nature Communications 15Adipocyte inflammation is the primary driver of hepatic insulin resistance in a human iPSC-based microphysiological system
Interactions between adipose tissue, liver and immune system are at the center of metabolic dysfunction-associated steatotic liver disease and type 2 diabetes. To address the need for an accurate in vitro model, we establish an interconnected microphysiological system (MPS) containing white adipocytes, hepatocytes and proinflammatory macrophages derived from isogenic human induced pluripotent stem cells. Using this MPS, we find that increasing the adipocyte-to-hepatocyte ratio moderately affects hepatocyte function, whereas macrophage-induced adipocyte inflammation causes lipid accumulation in hepatocytes and MPS-wide insulin resistance, corresponding to initiation of metabolic dysfunction-associated steatotic liver disease. We also use our MPS to identify and characterize pharmacological intervention strategies for hepatic steatosis and systemic insulin resistance and find that the glucagon-like peptide-1 receptor agonist semaglutide improves hepatocyte function by acting specifically on adipocytes. These results establish our MPS modeling the adipose tissue-liver axis as an alternative to animal models for mechanistic studies or drug discovery in metabolic diseases. In vitro modelling of the adipose tissue-liver axis can advance understanding and therapy of metabolic disease, including by distinguishing effects of obesity and inflammation. Here, authors develop such a system based on isogenic human iPSCs and interconnected microphysiological devices.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 100-0276 mTeSRâ„¢ Plus 05310 STEMdiffâ„¢ Hematopoietic Kit 05240 STEMdiffâ„¢ Mesenchymal Progenitor Kit Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Catalog #: 05310 Product Name: STEMdiffâ„¢ Hematopoietic Kit Catalog #: 05240 Product Name: STEMdiffâ„¢ Mesenchymal Progenitor Kit Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-1020Lot #:AllLanguage:EnglishProduct Name:CellPoreâ„¢ Transfection Kit 300Catalog #: 100-1020 Lot #: All Language: English Product Name: CellPoreâ„¢ Transfection Kit 300 Reference(Mar 2025) Life Science Alliance 8 6A novel human organoid model system reveals requirement of TCF4 for oligodendroglial differentiation
In this study, we developed a cell system to study TCF4 in human oligodendrocyte differentiation, showed that TCF4 regulates human oligodendroglial differentiation in a dose-dependent manner, and established a system to dissect TCF4 function in a human tissue–like context. Heterozygous mutations of TCF4 in humans cause Pitt–Hopkins syndrome, a neurodevelopmental disease associated with intellectual disability and brain malformations. Although most studies focus on the role of TCF4 in neural stem cells and neurons, we here set out to assess the implication of TCF4 for oligodendroglial differentiation. We discovered that both monoallelic and biallelic mutations in TCF4 result in a diminished capacity to differentiate human neural progenitor cells toward myelinating oligodendrocytes through the forced expression of the transcription factors SOX10, OLIG2, and NKX6.2. Using this experimental strategy, we established a novel organoid model, which generates oligodendroglial cells within a human neurogenic tissue–like context. Also, here we found a reduced ability of TCF4 heterozygous cells to differentiate toward oligodendroglial cells. In sum, we establish a role of human TCF4 in oligodendrocyte differentiation and provide a model system, which allows to dissect the disease etiology in a human tissue–like context.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 85850 ³¾°Õ±ð³§¸éâ„¢1 100-0276 mTeSRâ„¢ Plus Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-1731Lot #:AllLanguage:EnglishProduct Name:Human Recombinant Noggin (E. coli-expressed), ACFCatalog #:100-1732Lot #:AllLanguage:EnglishProduct Name:Human Recombinant Noggin (E. coli-expressed), ACFCatalog #: 100-1731 Lot #: All Language: English Product Name: Human Recombinant Noggin (E. coli-expressed), ACF Catalog #: 100-1732 Lot #: All Language: English Product Name: Human Recombinant Noggin (E. coli-expressed), ACF Reference(Jan 2025) Cell Death Discovery 11Rapid iPSC-derived neuromuscular junction model uncovers motor neuron dominance in amyotrophic lateral sclerosis cytopathy
The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties. To overcome these limitations, we developed a rapid human NMJ model using cryopreserved MNs and SKMs derived from iPSCs. Within 12 days of coculture, we successfully recreated NMJ-specific connectivity that closely mirrors in vivo synapse formation. Using this model, we investigated amyotrophic lateral sclerosis (ALS) and replicated ALS-specific NMJ cytopathies with SOD1 mutant and corrected isogenic iPSC lines. Quantitative analysis of 3D confocal microscopy images revealed a critical role of MNs in initiating ALS-related NMJ cytopathies, characterized by alterations in the volume, number, intensity, and distribution of acetylcholine receptors, ultimately leading to impaired muscle contractions. Our rapid and precise in vitro NMJ model offers significant potential for advancing research on NMJ physiology and pathology, as well as for developing treatments for NMJ-related diseases.Catalog #: Product Name: 05946 °Õ±ð³§¸éâ„¢-·¡6 05990 °Õ±ð³§¸éâ„¢-·¡8â„¢ Catalog #: 05946 Product Name: °Õ±ð³§¸éâ„¢-·¡6 Catalog #: 05990 Product Name: °Õ±ð³§¸éâ„¢-·¡8â„¢ Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:100-1729Lot #:AllLanguage:EnglishProduct Name:Human Recombinant R-Spondin-1 (E. coli-expressed), ACFCatalog #:100-1730Lot #:AllLanguage:EnglishProduct Name:Human Recombinant R-Spondin-1 (E. coli-expressed), ACFCatalog #: 100-1729 Lot #: All Language: English Product Name: Human Recombinant R-Spondin-1 (E. coli-expressed), ACF Catalog #: 100-1730 Lot #: All Language: English Product Name: Human Recombinant R-Spondin-1 (E. coli-expressed), ACF Reference(Jun 2025) Stem Cell Research & Therapy 16High-throughput robotic isolation of human iPS cell clones reveals frequent homozygous induction of identical genetic manipulations by CRISPR-Cas9
BackgroundGenome editing in human iPS cells is a powerful approach in regenerative medicine. CRISPR-Cas9 is the most common genome editing tool, but it often induces byproduct insertions and deletions in addition to the desired edits. Therefore, genome editing of iPS cells produces diverse genotypes. Existing assays mostly analyze genome editing results in cell populations, but not in single cells. However, systematic profiling of genome editing outcomes in single iPS cells was lacking. Due to the high mortality of human iPS cells as isolated single cells, it has been difficult to analyze genome-edited iPS cell clones in a high-throughput manner.MethodsIn this study, we developed a method for high-throughput iPS cell clone isolation based on the precise robotic picking of cell clumps derived from single cells grown in extracellular matrices. We first introduced point mutations into human iPS cell pools by CRISPR-Cas9. These genome-edited human iPS cells were dissociated and cultured as single cells in extracellular matrices to form cell clumps, which were then isolated using a cell-handling robot to establish genome-edited human iPS cell clones. Genome editing outcomes in these clones were analyzed by amplicon sequencing to determine the genotypes of individual iPS cell clones. We identified and distinguished the sequences of different insertions and deletions induced by CRISPR-Cas9 while determining their genotypes. We also cryopreserved the established iPS cell clones and recovered them after determining their genotypes.ResultsWe analyzed over 1,000 genome-edited iPS cell clones and found that homozygous editing was much more frequent than heterozygous editing. We also observed frequent homozygous induction of identical genetic manipulations, including insertions and deletions, such as 1-bp insertions and 8-bp deletions. Moreover, we successfully cryopreserved and then recovered genome-edited iPS cell clones, demonstrating that our cell-handling robot-based method is valuable in establishing genome-edited iPS cell clones.ConclusionsThis study revealed a previously unknown property of genome editing in human iPS cells that identical sequence manipulations tend to be induced in both copies of the target sequence in individual cells. Our new cloning method and findings will facilitate the application of genome editing to human iPS cells.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-025-04414-2.Catalog #: Product Name: 100-0276 mTeSRâ„¢ Plus Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Items 1945 to 1956 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.