Product Information
Items 1813 to 1824 of 13914 total
- Reference(Sep 2024) Cell Reports Methods 4 9
A compact, versatile drug-induced splicing switch system with minimal background expression
SummaryGene-switch techniques hold promising applications in contemporary genetics research, particularly in disease treatment and genetic engineering. Here, we developed a compact drug-induced splicing system that maintains low background using a human ubiquitin C (hUBC) promoter and optimized drug (LMI070) binding sequences based on the Xon switch system. To ensure precise subcellular localization of the protein of interest (POI), we inserted a 2A self-cleaving peptide between the extra N-terminal peptide and POI. This streamlined and optimized switch system, named miniXon2G, effectively regulated POIs in different subcellular localizations both in vitro and in vivo. Furthermore, miniXon2G could be integrated into endogenous gene loci, resulting in precise, reversible regulation of target genes by both endogenous regulators and drugs. Overall, these findings highlight the performance of miniXon2G in controlling protein expression with great potential for general applicability to diverse biological scenarios requiring precise and delicate regulation. Graphical abstract Highlights•miniXon2G is a compact and versatile version of the Xon gene-switch system•A P2A peptide eliminates residual peptides from functional proteins•We demonstrate applications on multiple proteins of interest•miniXon2G is a precise and reversible switch system with minimal background expression MotivationThe Xon drug-inducible splice-switch system is a simple and highly adaptable tool for regulated protein expression. We sought to further engineer this system to expand its applications in contemporary genetics research. In particular, we focused on reducing the size of the switch elements, maintaining minimal background expression, introducing a feature to remove extraneous peptide fragments, and demonstrating genomic integration and validation on a range of targets. Chi et al. develop a compact and versatile miniXon2G drug-inducible splice-switch system based on the Xon system. It features a reduced size, minimal background, and the removal of extraneous peptide fragments, enabling application to various biological scenarios that require precise expression control.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Safety Data SheetCatalog #: Product Name: 100-1173 ABT-263 Catalog #: 100-1173 Product Name: ABT-263 Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0863Lot #:AllLanguage:EnglishProduct Name:Diseased Human Plasma, Sjogren's SyndromeCatalog #: 200-0863 Lot #: All Language: English Product Name: Diseased Human Plasma, Sjogren's Syndrome Reference(Apr 2025) Scientific Reports 15 Suppl 1Maturation of human induced pluripotent stem cell-derived cardiomyocytes promoted by Brachyury priming
Cardiac differentiation of human induced pluripotent stem cells is readily achievable, yet derivation of mature cardiomyocytes has been a recognized limitation. Here, a mesoderm priming approach was engineered to boost the maturation of cardiomyocyte progeny derived from pluripotent stem cells under standard cardiac differentiation conditions. Functional and structural hallmarks of maturity were assessed through multiparametric evaluation of cardiomyocytes derived from induced pluripotent stem cells following transfection of the mesoderm transcription factor Brachyury prior to initiation of lineage differentiation. Transfection with Brachyury resulted in earlier induction of a cardiopoietic state as hallmarked by early upregulation of the cardiac-specific transcription factors NKX2.5, GATA4, TBX20. Enhanced sarcomere maturity following Brachyury conditioning was documented by an increase in the proportion of cells expressing the ventricular isoform of myosin light chain and an increase in sarcomere length. Mesoderm primed cells displayed increased reliance on mitochondrial respiration as determined by increased mitochondrial size and a greater basal oxygen consumption rate. Further, Brachyury priming drove maturation of calcium handling enabling transfected cells to maintain calcium transient morphology at higher external field stimulation rates and augmented both calcium release and sequestration kinetics. In addition, transfected cells displayed a more mature action potential morphology with increased depolarization and repolarization kinetics. Derived cells transfected with Brachyury demonstrated increased toxicity response to doxorubicin as determined by a compromise in calcium transient morphology. Thus, Brachyury pre-treatment here achieved a streamlined strategy to promote maturity of human pluripotent stem cell-derived cardiomyocytes establishing a generalizable platform ready for deployment.Catalog #: Product Name: 100-0276 mTeSRâ„¢ Plus Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0862Lot #:AllLanguage:EnglishProduct Name:Diseased Human Plasma, SclerodermaCatalog #: 200-0862 Lot #: All Language: English Product Name: Diseased Human Plasma, Scleroderma Reference(Jun 2025) Development (Cambridge, England) 152 12Ciliary biology intersects autism and congenital heart disease
ABSTRACTAutism spectrum disorder (ASD) and congenital heart disease (CHD) frequently co-occur, yet the underlying molecular mechanisms of this comorbidity remain unknown. Given that children with CHD are identified as newborns, understanding which CHD variants are associated with autism could help select individuals for early intervention. Autism gene perturbations commonly dysregulate neural progenitor cell (NPC) biology, so we hypothesized that CHD genes disrupting neurogenesis are more likely to increase ASD risk. Therefore, we performed an in vitro pooled CRISPR interference screen to identify CHD genes disrupting NPC biology and identified 45 CHD genes. A cluster of ASD and CHD genes are enriched for ciliary biology, and perturbing any one of seven such genes (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3 and TAOK1) impairs primary cilia formation in vitro. In vivo investigation of TAOK1 in Xenopus tropicalis reveals a role in motile cilia formation and heart development, supporting its prediction as a CHD gene. Together, our findings highlight a set of CHD genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology. Highlighted Article: The increased likelihood of autism in individuals with congenital heart disease may stem from shared genetic mechanisms centered on cilia biology.Catalog #: Product Name: 100-0276 mTeSRâ„¢ Plus Catalog #: 100-0276 Product Name: mTeSRâ„¢ Plus Safety Data SheetCatalog #: Product Name: 100-1172 Honokiol Catalog #: 100-1172 Product Name: Honokiol Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0861Lot #:AllLanguage:EnglishProduct Name:Diseased Human Plasma, Rheumatoid ArthritisCatalog #: 200-0861 Lot #: All Language: English Product Name: Diseased Human Plasma, Rheumatoid Arthritis Reference(Oct 2024) bioRxiv 16miR126-mediated impaired vascular integrity in Rett syndrome
Rett syndrome (RTT) is a neurodevelopmental disorder that is caused by mutations in melty-CpG binding protein 2 (MeCP2). MeCP2 is a non-cell type-specific DNA binding protein, and its mutation influences not only neural cells but also non-neural cells in the brain, including vasculature associated with endothelial cells. Vascular integrity is crucial for maintaining brain homeostasis, and its alteration may be linked to the pathology of neurodegenerative disease, but a non-neurogenic effect, especially the relationship between vascular alternation and Rett syndrome pathogenesis, has not been shown. Here, we recapitulate a microvascular network using Rett syndrome patient-derived induced pluripotent stem (iPS) cells that carry MeCP2[R306C] mutation to investigate early developmental vascular impact. To expedite endothelial cell differentiation, doxycycline (DOX)-inducible ETV2 expression vectors were inserted into the AAVS1 locus of Rett syndrome patient-derived iPS cells and its isogenic control by CRISPR/Cas9. With these endothelial cells, we established a disease microvascular network (Rett-dMVNs) and observed higher permeability in the Rett-dMVNs compared to isogenic controls, indicating altered barrier function by MeCP2 mutation. Furthermore, we unveiled that hyperpermeability is involved in the upregulation of miR126–3p in Rett syndrome patient-derived endothelial cells by microRNA profiling and RNAseq, and rescue of miR126–3p level can recover their phenotype. We discover miR126–3p-mediated vascular impairment in Rett syndrome patients and suggest the potential application of these findings for translational medicine.Catalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus Product Information SheetCatalog #: Lot #: Language: Product Name: Catalog #:200-0860Lot #:AllLanguage:EnglishProduct Name:Diseased Human Plasma, PsoriasisCatalog #: 200-0860 Lot #: All Language: English Product Name: Diseased Human Plasma, Psoriasis Reference(May 2024) Cardiovascular Research 120 9Inhibition of TBL1 cleavage alleviates doxorubicin-induced cardiomyocytes death by regulating the Wnt/?-catenin signal pathway
AbstractAimsDoxorubicin (DOX) is a widely used anthracycline anticancer agent; however, its irreversible effects on the heart can result in DOX-induced cardiotoxicity (DICT) after cancer treatment. Unfortunately, the pathophysiology of DICT has not yet been fully elucidated, and there are no effective strategies for its prevention or treatment. In this investigation, the novel role of transducin beta-like protein 1 (TBL1) in developing and regulating DICT was explored.Methods and resultsWe observed a reduction in TBL1 protein expression levels as well as cleavage events in the transplanted cardiac tissues of patients diagnosed with Dilated Cardiomyopathy and DICT. It was revealed that DOX selectively induces TBL1 cleavage at caspase-3 preferred sites—D125, D136, and D215. Interestingly, overexpression of the uncleaved TBL1 mutant (TBL1uclv) variant reduced apoptosis, effectively preventing DOX-induced cell death. We confirmed that cleaved TBL1 cannot form a complex with ?-catenin. As a result, Wnt reporter activity and Wnt target gene expression collectively indicate a decrease in Wnt/?-catenin signalling, leading to DICT progression. Furthermore, the cleaved TBL1 triggered DOX-induced abnormal electrophysiological features and disrupted calcium homeostasis. However, these effects were improved in TBL1uclv-overexpressing human-induced pluripotent stem cell-derived cardiomyocytes. Finally, in a DICT mouse model, TBL1uclv overexpression inhibited the DICT-induced reduction of cardiac contractility and collagen accumulation, ultimately protecting cardiomyocytes from cell death.ConclusionOur findings reveal that the inhibition of TBL1 cleavage not only mitigates apoptosis but also enhances cardiomyocyte function, even in the context of DOX administration. Consequently, this study's results suggest that inhibiting TBL1 cleavage may be a novel strategy to ameliorate DICT. Graphical Abstract Graphical AbstractCatalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 05990 °Õ±ð³§¸éâ„¢-·¡8â„¢ Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 05990 Product Name: °Õ±ð³§¸éâ„¢-·¡8â„¢ Safety Data SheetCatalog #: Product Name: 100-1171 AK-7 Catalog #: 100-1171 Product Name: AK-7 Items 1813 to 1824 of 13914 total
Shop ByFilter Results- Resource Type
-
- Product Information Sheet 2907 items
- Reference 7892 items
- Safety Data Sheet 3052 items
- Technical Manual 63 items
- Product Type
-
- 35 items
- Cell Culture Media and Supplements 27 items
- Cell Engineering and Molecular Tools 3 items
- Cell Isolation Products 5 items
- Instruments and Software 4 items
- Tissue and Cell Culture Dissociation Reagents 2 items
- Training and Education 1 item
- Area of Interest
-
- 29 items
- Angiogenic Cell Research 49 items
- Antibody Development 1 item
- Cancer 601 items
- Cell Line Development 137 items
- Cell Therapy Development 1 item
- Chimerism 5 items
- Cord Blood Banking 25 items
- Disease Modeling 4 items
- Drug Discovery and Toxicity Testing 182 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 158 items
- HIV 52 items
- HLA 8 items
- Hybridoma Generation 1 item
- Immunology 743 items
- Infectious Diseases 4 items
- Neuroscience 491 items
- Organoids 1 item
- Respiratory Research 1 item
- Stem Cell Biology 2493 items
- Transplantation Research 54 items
- Brand
-
- 0 20 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- CellPore 1 item
- ClonaCell 84 items
- CryoStor 65 items
- ES-Cult 77 items
- EasyPick 1 item
- EasySep 752 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 34 items
- MesenCult 133 items
- MethoCult 444 items
- MyeloCult 64 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 7 items
- ReLeSR 1 item
- RoboSep 23 items
- RosetteSep 253 items
- STEMdiff 54 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1456 items
- ThawSTAR 1 item
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 27 items
- Airway Cells 41 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endoderm, PSC-Derived 1 item
- Endothelial Cells 1 item
- Endothelial Cells, PSC-Derived 1 item
- Epithelial Cells 49 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 777 items
- Hepatic Cells 2 items
- Hybridomas 75 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 13 items
- Kidney Cells 1 item
- Leukemia/Lymphoma Cells 8 items
- Leukopaks 1 item
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 33 items
- Myeloid Cells 99 items
- NK Cells 80 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 381 items
- Neurons 135 items
- Plasma 3 items
- Pluripotent Stem Cells 1689 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 179 items
- T Cells, CD4+ 85 items
- T Cells, CD8+ 49 items
- T Cells, Regulatory 18 items
- Species
-
- 41 items
Loading...Copyright © 2025 º£½ÇÆÆ½â°æ. All rights reserved.